
talon Documentation
Release 0.2.0

Samuel Deslauriers-Gauthier, Matteo Frigo, Mauro Zucchelli

Jan 20, 2021

INSTALL AND GET STARTED

1 Getting help 3

2 Contributing guidelines 5
2.1 Installation . 5
2.2 Getting started . 7
2.3 CLI: Command Line Interface . 14
2.4 Solving the inverse problem . 19
2.5 Concatenating linear operators . 31
2.6 Create linear operator from volume . 34
2.7 Functions . 35
2.8 Classes . 40
2.9 CLI module . 46
2.10 How to cite talon . 50
2.11 List of Contributors . 50
2.12 License . 50
2.13 Funding . 51

Bibliography 53

Python Module Index 55

Index 57

i

ii

talon Documentation, Release 0.2.0

talon is a pure Python package that implements Tractograms As Linear Operators in Neuroimaging.

The software provides the talon Python module, which includes all the functions and tools that are necessary for
filtering a tractogram. In particular, specific functions are devoted to:

• Transforming a tractogram into a linear operator.

• Solving the inverse problem associated to the filtering of a tractogram.

• Perform these operations on a GPU.

The package is available at Pypi and can be easily installed from the command line.

pip install cobcom-talon

Talon is a free software released under MIT license and the documentation is available on Read the Docs.

INSTALL AND GET STARTED 1

https://gitlab.inria.fr/cobcom/talon/-/commits/master"
https://gitlab.inria.fr/cobcom/talon/-/commits/master
https://cobcom-talon.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/cobcom-talon/
https://gitlab.inria.fr/cobcom/talon/-/blob/master/LICENSE
https://cobcom-talon.readthedocs.io/

talon Documentation, Release 0.2.0

2 INSTALL AND GET STARTED

CHAPTER

ONE

GETTING HELP

The preferred way to get assistance in running code that uses talon is through the issue system of the Gitlab repos-
itory where the source code is available. Developers and maintainers frequently check newly opened issues and will
be happy to help you.

3

https://gitlab.inria.fr/cobcom/talon
https://gitlab.inria.fr/cobcom/talon

talon Documentation, Release 0.2.0

4 Chapter 1. Getting help

CHAPTER

TWO

CONTRIBUTING GUIDELINES

The development happens in the devel branch of the Gitlab repository, while the master is kept for the stable
releases only. We will consider only merge requests towards the devel branch.

2.1 Installation

Talon runs only on Python 3. The installation has the following dependencies:

• Numpy

• Scipy

• NiBabel

• PyUnLocBox

• PyOpenCL (only if you plan to exploit the GPU capabilities)

If you are an Anaconda user, you may want to create a dedicated talon-env environment and populate it with the
right dependencies, then install talon.

conda env create -n talon-env -f environment.yml
pip install cobcom-talon

Alternatively, you can install the dependencies and talon all via pip.

pip install numpy
pip install scipy
pip install nibabel
pip install pyunlocbox
pip install pyopencl # uncomment for GPU capabilities

pip install cobcom-talon

To install talon directly from the source, clone this repository and run the standard local setup commands.

git clone https://gitlab.inria.fr/cobcom/talon.git
cd talon
pip install -U .

5

https://gitlab.inria.fr/cobcom/talon

talon Documentation, Release 0.2.0

2.1.1 Check installation

To check that talon has been properly installed, try to import the talon and the talon.cli modules into a Python
session as follows. If no error is raised, the installation has been successful.

>>> import talon
>>> import talon.cli

To further check that the GPU capabilities are active, try to import the talon.opencl. If no error is raised, the
installation has been successful.

>>> import talon.opencl

2.1.2 For developers

If you are thinking about developing your own fork of talon, you may want to use the latest version in the devel
branch of the repository and install it in editable mode.

git clone https://gitlab.inria.fr/cobcom/talon.git
cd talon
git checkout devel
pip install -e .

Tests

The package uses unittest as a testing suite. To run all the tests, execute the following command in the source’s
root directory.

python -m unittest -v

Test coverage can be checked with coverage as follows.

coverage run -m unittest
coverage report -m

Documentation

The sources of the documentation are in the doc folder. The compilation requires the sphinx package and the theme
to be installed.

pip install sphinx
pip install sphinx_rtd_theme

To compile the documentation, move to the doc folder and run make <format>, where the format can be html,
latex or any other sphinx-compatible format. To get a local copy of the the html documentation, run the make
html command.

cd doc
make clean # deletes results of previous compilations
make html

6 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

2.2 Getting started

The talon package, at its core, provides a way to transform a tractogram into a linear operator, or more precisely a
matrix. This matrix can be used in two ways: to generate data and to explain data. In both cases, the type of the data
is arbitrary and is specified by the user, not by talon. To quickly get you started, the following examples illustrate
both use cases.

If you haven’t already, start by installing talon. See the Installation section.

This short introduction is separated into 3 parts:

• Building a linear operator

• Generating data with a linear operator

• Explaining data with a linear operator

To generate data using talon, we need a tractogram. In general, you may use NiBabel’s tools such as nibabel.
streamlines.load to load your own tractogram. In this paragraph following paragraph we will show how to
define a simple synthetic tractogram composed of two crossing streamline bundles.

import numpy as np
from scipy.interpolate import interp1d

The number of voxels in each dimension of the output image.
image_size = 25

center = image_size // 2
t = np.linspace(0, 1, int(image_size / 0.1))

Generate the horizontal and vertical streamlines.
horizontal_points = np.array([[0, center, center], [image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

vertical_points = np.array([[center, 0, center], [center, image_size - 1, center]])
vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

A tractogram is just a collection of streamlines.
tractogram = [horizontal_streamline, vertical_streamline]

To visualize the geometry of the streamlines, you can display them using matplotlib.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()

2.2. Getting started 7

talon Documentation, Release 0.2.0

2.2.1 Building a linear operator

Now that we have a tractogram, we can start using talon. First, we will voxelize the tractogram by separating each
streamline into voxel elements. If you are familiar with tractography, streamlines are generated by following peaks
of an image. Voxelizing a tractogram is the opposite i.e. creating peaks from streamlines. In order to voxelize the
tractogram, we first need to provide a list of directions of the possible orientations of the streamlines represented as an
array of unit vectors.

import talon

directions = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float)
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)

8 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Next we define how each streamline direction is projected onto the data.

generators = np.ones((len(directions), 1))

Finally, we build the linear operator 𝐴.

A = talon.operator(generators, indices, lengths)

Note that generators can be multidimensional. One way to illustrate this is to use the directions as generators.

G = talon.operator(directions, indices, lengths)

2.2.2 Generating data with a linear operator

To generate data simply multiply (using the @ operator) the linear operator by a weight vector.

Using a vector off all ones gives all streamlines equal weight.
x = np.ones(A.shape[1])
b = A @ x

We can do the same thing with the multidimensional operator.
m = G @ x

The data vector b can be reshaped into an image and visualized.

image = b.reshape(image_shape)

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])
plt.colorbar(shrink=0.8)
plt.show()

An we obtain the following image which corresponds to the streamline density.

2.2. Getting started 9

talon Documentation, Release 0.2.0

The second data vector can also be visualized, but requires a bit more manipulation.

rgb_image = m.reshape(image_shape + (3,))

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(rgb_image[:, :, center])
plt.show()

10 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

2.2.3 Explaining data with a linear operator

Considering the case where an error in the tractography algorithm generates a spurious streamline in our tractogram.
In the case of our example, we simply add a diagonal streamline to tractogram.

diagonal_points = np.array([[0, center, center], [center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

tractogram.append(diagonal_streamline)

Visualize the new tractogram.
fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.plot(tractogram[2][:,0], tractogram[2][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()

2.2. Getting started 11

talon Documentation, Release 0.2.0

Given b, the data generated using by the original tractogram, we can use talon to calculate the contribution of each
streamline to the data. In order to do so, we first have to generate a linear operator using the new tractogram. In this
case, we use also use a set of 1000 equally spaced unit vectors as directions.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
Z = talon.operator(generators, indices, lengths)

What we want to find are the streamline contributions x which minimize

1

2
||𝑍𝑥− 𝑏||2 + Ω(𝑥)

In this example it does not make sense to have streamlines with a negative contribution, therefore, Ω(𝑥) will be set as
a positivity constraint. In talon, we can force positivity constraint using the talon.regularization function.

12 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

positivity_constraint = talon.regularization(non_negativity=True)

The resulting regularization term is then given to the talon.solve function in order to obtain the streamlines
contributions.

solution = talon.solve(Z, b, reg_term=positivity_constraint)
print('solution.x = [%.2f, %.2f, %.2f]' % tuple(solution.x))

solution.x = [1.00, 1.00, 0.00]

As it is possible to see, the two original streamlines contribute equally to the data while the third streamline does not
contribute.

We can use the talon solution to filter the tractogram and visualize only the streamlines presenting a non-zero
contribution.

New filtered tractogram.
filtered_tractogram = []

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for i,s in enumerate(tractogram):

If the current streamline contributes to the data.
if solution.x[i] > 0.0:

Add streamline to filtered tractogram.
filtered_tractogram.append(s)

Visualize the streamline.
ax.plot(s[:,0], s[:,1], s[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.show()

2.2. Getting started 13

talon Documentation, Release 0.2.0

2.3 CLI: Command Line Interface

Talon provides a handy command line interface that allows to filter a tractogram file and obtain the streamline coeffi-
cients in text format.

The main command is talon, which is installed together with the package (see Installation) and allows to filter and
voxelize a tractogram.

>>> talon --help
usage: talon [-h] {filter,voxelize} ...

Tractograms As Linear Operators in Neuroimaging - command line interface

(continues on next page)

14 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

(continued from previous page)

positional arguments:
{filter,voxelize}
filter Filter a tractogram using TALON.
voxelize Voxelize a tractogram using TALON.

optional arguments:
-h, --help show this help message and exit

Copyright: CoBCoM 2021.

2.3.1 talon filter

The talon filter command allows to filter a given tractogram as in Solving the inverse problem, but without the
need to write any Python code.

The basic syntax that you’ll have to use is

talon filter streamlines.tck data.nii.gz streamline_weights.txt

where streamline.tck is the tractogram to be filtered, data.nii.gz is what is being fit by the filtering process
(we will get to that later) and streamline_weights.txt is the text file where the streamline weights will be
saved.

Streamlines

The input tractogram must be in NiBabel-readable format, i.e., in tck or trk format. In both cases, it is required to
be in RAS+ and mm space. The streamline coordinate (0,0,0) refers to the center of the voxel.

Data

The input data must be a .nii/.nii.gz volume registered with the tractogram. It contains the data fitted by talon.
For the volume-fraction model used by talon filter it has to encode the intra-axonal volume fraction in each
voxel.

Output weights

The output is a text file where the n-th row contains the weight computed for the n-th streamline.

Group sparsity regularization

The command is able to take into account the bundle organization of the streamlines. For a detailed presentation of
how this is encoded as a regularization term, please refer to Structured Sparsity. This prior is activated by passing
the option --streamline-assignment sa.txt to talon solve. The sa.txt file contains one row per
streamline and the n-th row contains the labels of the two regions connected by the n-th streamline. For instance, a
tractogram with three streamlines could correspond to the following assignment file.

2.3. CLI: Command Line Interface 15

talon Documentation, Release 0.2.0

assignment file of subject ABC1234
3 15
7 2
15 3

The first row starts with #, hence will not be read by the program. Then we have a streamline connecting regions 3
and 15, a second one connecting regions 7 and 2 and a third streamline connecting regions 15 and 3. The order of
the labels is ignored by the program, hence the first and the third streamlines are bundled together, while the second
streamline forms another bundle.

The assignment file is typically obtained via tck2connectome, which is part of the Mrtrix’s suite.

tck2connectome \
streamlines.tck atlas.nii.gz connectome.txt \
-out_assignment streamline_assignment.txt

Using GPUs

Using a GPU can significantly speed up the execution. Before attempting to use it, be sure to have PyOpenCL installed.
The use of the GPU processing capabilities is triggered by the --operator-type option as follows.

--operator-type opencl

Other options

>>> talon filter --help
usage: talon filter [-h] [--operator-type {reference,fast,opencl}]

[--ndir number] [--allow-negative-x] [--sigma value]
[--streamline-assignment file] [--connectome file]
[--objective-relative-tolerance value]
[--x-absolute-tolerance value] [--maxiter count]
[--precomputed-indices-weights file_idx file_wei]
[--save-generators-indices-weights file_gen file_idx file_wei | --

→˓save-operator-pickle file]
[--force] [--quiet | --warn | --info | --debug]
in_tracks in_data out_weights

Use TALON to filter a tractogram with the Volume Fraction forward model.

positional arguments:
in_tracks Input tractogram file in RAS+ and mm space. The

streamline coordinate (0,0,0) refers to the center of
the voxel. Must be in NiBabel-readable format (.trk or
.tck).

in_data Input data to be fitted. Serves also as reference
space for tractogram. Must be in NiBabel-readable
format (.nii or .nii.gz).

out_weights Output text file containing the streamline weights.

optional arguments:
-h, --help show this help message and exit
--operator-type {reference,fast,opencl}

Type of operator to use. Default: `fast`.
--ndir number Number of directions for the voxelization. Default:

(continues on next page)

16 Chapter 2. Contributing guidelines

https://mrtrix.readthedocs.io/en/3.0.2/reference/commands/tck2connectome.html
https://pypi.org/project/pyopencl/

talon Documentation, Release 0.2.0

(continued from previous page)

1000.
--precomputed-indices-weights file_idx file_wei

Uses the indices and weights passed as input to build
the linear operator. E.g. `--precomputed-indices-
weights <indices>.npz <weights>.npz`. The two matrices
must be defined on the same number of directions as
the ones that are used at the call of this script.

--save-generators-indices-weights file_gen file_idx file_wei
Saves the linear operator as three separate files
`<generators>.npy <indices>.npz <weights>.npz`. All
types of operator can be saved in this format.

--save-operator-pickle file
Saves the linear operator with pickle. Only available
when --operator-type is set to `reference` or `fast`.

--force Overwrite existing files.
--quiet Do not display messages.
--warn Display warning messages.
--info Display information messages.
--debug Display debug messages.

Solver options:
--allow-negative-x Disables the non negativity constraint.
--sigma value Sets the regularization scale parameter as in (Frigo,

2021). The final value of lambda is
`sigma*max(||At*data||/gwei)`, where sigma is the
passed parameter, `||At*data||` is the 2-norm of the
product between the transposed linear operator and the
data, and `gwei` is the vector of the weights
associated to each group of streamlines. Default: 0.0.

--streamline-assignment file
Activates the group sparsity regularization by
specifying the node assignments of each streamline to
some parcellation. Typically, this file is produced by
the Mrtrix3 command `tck2connectome` with the option
`-out_assignment`. The file is expected to be in text
format with one row per streamline. E.g., if the first
row is [5, 14], the first streamline will be bundled
together with all the streamlines corresponding rows
having [5, 14] or [14, 5].

--connectome file Activates the FIT regularization by specifying the
connectivity matrix. Each streamline bundle is
associated to the entry in the connectivity matrix
corresponding to the region lables that it connects.
E.g., the bundle connecting regions 5 and 14 is
associated to the entry [5, 14] of the connectivity
matrix. Notice that the first row and column
correspond to the zero label. Must be used together
with `--streamline-assignment`.

--objective-relative-tolerance value
Sets relative tolerance on cost function. Default:
1e-06.

--x-absolute-tolerance value
Sets absolute tolerance on variable. Default: 1e-06.

--maxiter count Sets maximum number of iterations. Default: 1000.

2.3. CLI: Command Line Interface 17

talon Documentation, Release 0.2.0

2.3.2 talon voxelize

The talon filter command allows to create the indices and weights matrices that are necessary to define a talon
linear operator as in Getting started, but without the need to write any Python code.

The basic syntax that you’ll have to use is

talon voxelize streamlines.tck image.nii.gz indices.npz weights.npz

where streamline.tck is the tractogram to be voxelized, image.nii.gz is a reference image that defines
the shape of the linear operator (typically the data that is going to be fitted in the filtering process) and indices.
npz and weights.npz are the two COO sparse matrices that define the indices and weights of the linear operator
respectively.

Streamlines

The input tractogram must be in NiBabel-readable format, i.e., in tck or trk format. In both cases, it is required to
be in RAS+ and mm space. The streamline coordinate (0,0,0) refers to the center of the voxel.

Output matrices

The two COO matrices are saved in .npz format. If the suffix is not present in the filename, it is automatically
appended.

Other options

>>> talon voxelize --help
usage: talon voxelize [-h] [--ndir number] [--force]

[--quiet | --warn | --info | --debug]
in_tracks in_img out_ind out_wei

Transform a tractogram into the `indices` and `weights` matrices that are used
in the definition of the linear operator used by TALON.

positional arguments:
in_tracks Tractogram file to be voxelized in RAS+ and mm space. The

streamline coordinate (0,0,0) refers to the center of the
voxel. Must be in NiBabel-readable format (.trk or .tck).

in_img Image serving as space reference. Must be in NiBabel-readable
format (.nii or .nii.gz).

out_ind Path where the indices will be saved in .npz format.
out_wei Path where the weights will be saved in .npz format.

optional arguments:
-h, --help show this help message and exit
--ndir number Number of directions for the voxelization. Default: 1000.
--force Overwrite existing files.
--quiet Do not display messages.
--warn Display warning messages.
--info Display information messages.
--debug Display debug messages.

18 Chapter 2. Contributing guidelines

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html

talon Documentation, Release 0.2.0

2.4 Solving the inverse problem

The talon package, provides a way to solve the following optimization problem

𝑥* = argmin
𝑥

1

2
‖𝐴𝑥− 𝑦‖22 + Ω(𝑥)

where 𝑥 is a vector in R𝑛, 𝐴 is a linear operator from R𝑛 → R𝑚 and 𝑦 is a vector in R𝑚. The functional Ω : R𝑛 → R
acts as regularization term and must be convex and lower semi-continuous.

The first term of the target functional is devoted to the fitting of the data vector by means of the forward linear operator
𝐴 and the coefficient 𝑥𝑗 associated to each atom of 𝐴.

2.4.1 Defining regularization term

The possible choices for the regularization term are the following.

• Least Squares

• Non Negativity Constraint

• Structured Sparsity

• Structured Sparsity with Non Negativity

Each of these regularization terms can be defined in talon by calling the talon.regularization function.

Least Squares

Whenever Ω(𝑥) = 0 for all the admissible values of 𝑥, the problem reduces to the classical Least Squares formulation.
This is the default regularization term in talon, hence one just needs to call the talon.regularization function
as follows.

regterm = talon.regularization()

See an example of this problem in Solve the Least Squares problem.

Non Negativity Constraint

To solve the Non Negative Least Squares (NNLS) problem the regularization term must be the indicator function (in
the sense of convex analysis) of the first orthant, namely

Ω(𝑥) = 𝜄≥0(𝑥)

which is the function that takes value∞ whenever 𝑥 does not belong to the first orthant. The talon way to obtain such
a regularization term is the following.

regterm = talon.regularization(non_negativity=True)

See an example of this problem in Solve the Non Negative Least Squares (NNLS) problem.

2.4. Solving the inverse problem 19

talon Documentation, Release 0.2.0

Structured Sparsity

To promote sparse solutions, define the group sparsity regularization term

Ω(𝑥) = 𝜆
∑︁
𝑔∈𝐺

𝑤𝑔‖𝑥𝑔‖2

where 𝜆 is the regularization parameter, 𝑤𝑔 is the weight associated to each group 𝑔, 𝑥𝑔 is the subset of entries of 𝑥
corresponding to group 𝑔 and 𝐺 is the list of groups. See [2011j] for a discussion on the mathematical definition of
these groups.

The groups 𝑔 ∈ 𝐺 must be defined as a list of lists, where each element encodes the indices that define a single group.
The weights 𝑤𝑔 associated to each group must be contained in a single numpy array of the same length as 𝐺. The
following code defines three groups and some standard weight for each of them.

groups = [[0, 2, 5], [1, 3, 4, 6], [7, 8, 9]]
weights = np.array([1.0 / len(g) for g in groups])

Ones the groups, the weights and the regularization parameter are defined, the regularization term can be initialized as
follows.

print('Regularization parameter: {}'.format(the_lambda))
print('Number of groups: {}'.format(len(groups)))
print('Number of weights: {}'.format(len(weights)))

regterm = talon.regularization(regularization_parameter=the_lambda,
groups=groups, weights=weights)

See an example of this problem at Solve the Group Sparsity problem.

Notice that the standard ℓ1 regularization is a particular case of structure sparsity where there is only one group
containing all the admissible indices. Assuming that these indices are 0 . . . 𝑛, the following line of code defines the
problem for classical ℓ1 regularization.

groups = [list(range(n))]

See an example of this problem at Solve the Lasso problem and Solve the Non Negative Lasso problem.

Structured Sparsity with Non Negativity

To add the Non Negativity constraint to the Structured Sparsity regularization we just need to set the
non_negativity flag as True during the initialization of the regularization term.

regterm = talon.regularization(regularization_parameter=the_lambda,
groups=groups, weights=weights,
non_negativity=True) # here it is

See an example of this problem at Solve the Non Negative Group Sparsity problem.

20 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

2.4.2 Computing the solution

The function devoted to the computation of the solution of the inverse problem is the talon.solve function. It can
be called as follows.

linear_operator = # build linear operator
data = # define the data to fit
reg_term = # initialize the regularization term as above

solution = talon.solve(linear_operator=linear_operator,
data=data,
reg_term=regterm)

The optimization problem is solved with the FISTA+BT algorithm proposed by Beck and Teboulle in [2009b].

See the API documentation for the description of the supplementary optional parameters.

The talon.solve function is a wrapper of the pyunlocbox.solvers.solve function.

2.4.3 Reading the result

The result of the optimization problem is given as a scipy.optimize.OptimizeResult object, which is a
dictionary with the following fields.

• x: estimated solution.

• status: attribute of talon.solve.ExitStatus enumeration. If status < 1, the algorithm didn’t con-
verge properly.

• message: string explaining reason for termination.

• fun: value of the objective function at the minimizer.

• nit: number of performed iterations

• reg_param: value of the regularization parameter, if employed.

2.4.4 Examples

Build the ground truth tractogram with two bundles of fibers.

import matplotlib.pyplot as plt
import numpy as np
import talon

from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import interp1d

Set seed for reproducibility
np.random.seed(1992)

The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

(continues on next page)

2.4. Solving the inverse problem 21

talon Documentation, Release 0.2.0

(continued from previous page)

Generate the ground truth tractogram.
tractogram = []
n_streamlines_per_bundle = 50

horizontal_points = np.array([[0, center, center],
[image_size - 1, center, center]])

horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
new_streamline = horizontal_streamline.copy()
new_streamline[:,1] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

vertical_points = np.array([[center, 0, center],
[center, image_size - 1, center]])

vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
new_streamline = vertical_streamline.copy()
new_streamline[:,0] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

Show the ground truth tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r',

linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
horizontal_streamline[:,1],
horizontal_streamline[:,2], 'k')

ax.plot(vertical_streamline[:,0],
vertical_streamline[:,1],
vertical_streamline[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.title('Ground truth tractogram')
plt.show()

You should see the following image:

22 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Generate the corresponding linear operator and the streamline density.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)

data = linear_operator @ np.ones(linear_operator.shape[1], dtype=np.float64)
image = data.reshape(image_shape)

Plot the density of the ground truth streamlines

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])

(continues on next page)

2.4. Solving the inverse problem 23

talon Documentation, Release 0.2.0

(continued from previous page)

plt.colorbar(shrink=0.8)
plt.title('Ground truth density of streamlines')
plt.show()

You should see the following image:

Add a diagonal bundle of false positives.

diagonal_points = np.array([[0, center, center],
[center, image_size - 1, center]])

diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):

(continues on next page)

24 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

(continued from previous page)

new_streamline = diagonal_streamline.copy()
new_streamline[:,0] += (np.random.rand(1) - 0.5)
new_streamline[:,1] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

Visualize the new tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r', linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
horizontal_streamline[:,1],
horizontal_streamline[:,2], 'k')

ax.plot(vertical_streamline[:,0],
vertical_streamline[:,1],
vertical_streamline[:,2], 'k')

ax.plot(diagonal_streamline[:,0],
diagonal_streamline[:,1],
diagonal_streamline[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.title('Tractogram with supplementary bundle')
plt.show()

You should see the following image:

2.4. Solving the inverse problem 25

talon Documentation, Release 0.2.0

Define the linear operator of the tractogram.

indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)

26 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Solve the Least Squares problem

solution = talon.solve(linear_operator=linear_operator, data=data,
verbose='NONE')

print('\nLeast Squares solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following.

Least Squares solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 145
Average coefficient of horizontal streamlines: 0.9999996764340565
Average coefficient of vertical streamlines: 0.9999996573175529
Average coefficient of diagonal streamlines : 4.908558143242968e-06
Value at minimizer: 7.0157355592255e-07

Solve the Non Negative Least Squares (NNLS) problem

reg_term = talon.regularization(non_negativity=True)
solution = talon.solve(linear_operator=linear_operator, data=data,

reg_term=reg_term, verbose='NONE')

print('\nNNLS solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

2.4. Solving the inverse problem 27

talon Documentation, Release 0.2.0

The output should be the following.

NNLS solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 25
Average coefficient of horizontal streamlines: 0.9999991567472424
Average coefficient of vertical streamlines: 0.9999991568721199
Average coefficient of diagonal streamlines : 5.0072499918376545e-06
Value at minimizer: 3.620593044727195e-07

Solve the Lasso problem

regpar = 1.0 # regularization parameter a.k.a. the lambda in the formula
groups = []
groups.append([k for k in range(0, len(tractogram))])

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
reg_term=reg_term, verbose='NONE')

print('\nLasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 93
Average coefficient of horizontal streamlines: 0.9999926298816814
Average coefficient of vertical streamlines: 0.9999925070704963
Average coefficient of diagonal streamlines : -2.1995490196016877e-05
Value at minimizer: 0.8165122997013363

28 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Solve the Non Negative Lasso problem

reg_term = talon.regularization(non_negativity=True,
groups=groups, weights=weights,
regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
reg_term=reg_term, verbose='NONE')

print('\nNon Negative Lasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Non Negative Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 23
Average coefficient of horizontal streamlines: 0.9999914147578718
Average coefficient of vertical streamlines: 0.9999914603196133
Average coefficient of diagonal streamlines : 4.482209580050452e-06
Value at minimizer: 0.8164938196507543

Solve the Group Sparsity problem

groups = []
groups.append([k for k in range(0, n_streamlines_per_bundle)]) # horizontal
groups.append([k for k in range(n_streamlines_per_bundle,

2 * n_streamlines_per_bundle)]) # vertical
groups.append([k for k in range(2 * n_streamlines_per_bundle,

3 * n_streamlines_per_bundle)]) # diagonal

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
reg_term=reg_term, verbose='NONE')

print('\nGroup Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))

(continues on next page)

2.4. Solving the inverse problem 29

talon Documentation, Release 0.2.0

(continued from previous page)

print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Group Sparsity solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 64
Average coefficient of horizontal streamlines: 0.9999821712768615
Average coefficient of vertical streamlines: 0.9999823618643954
Average coefficient of diagonal streamlines : 2.2318881330827924e-05
Value at minimizer: 2.000096258909371

Solve the Non Negative Group Sparsity problem

reg_term = talon.regularization(groups=groups, weights=weights,
non_negativity=True,
regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
reg_term=reg_term, verbose='NONE')

print('\nNon Negative Group Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(

np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(

np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Average coefficient of diagonal streamlines : {}'.format(
np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
n_streamlines_per_bundle))

print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Non Negative Group Sparsity solution
Success: True

(continues on next page)

30 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

(continued from previous page)

Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 22
Average coefficient of horizontal streamlines: 0.9999825264666186
Average coefficient of vertical streamlines: 0.9999825878147537
Average coefficient of diagonal streamlines : 0.0
Value at minimizer: 1.9999822314331122

References

2.5 Concatenating linear operators

It is possible to concatenate linear operators in a way that imitates the numpy.concatenate function. The only
concatenations that are allowed are in the vertical and horizontal directions.

The talon.concatenate function requires an iterable containing the linear operators to concatenate and the axis
along which they have to be concatenated.

The following code shows the correct syntax to concatenate two linear operators 𝐴 and 𝐵 vertically and horizontally:

V = talon.concatenate((A, B), axis=0) # vertical (default)
H = talon.concatenate((A, B), axis=1) # horizontal

which correspond to the following

𝑉 =

[︂
𝐴
𝐵

]︂
𝐻 =

[︀
𝐴 𝐵

]︀
.

2.5.1 Examples

Build a tractogram with two crossing bundles of fibers and the corresponding linear operator.

import numpy as np
import talon

from scipy.interpolate import interp1d

Set seed for reproducibility
np.random.seed(1992)

The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

streamlines_per_bundle = 50

def generate_crossing_tractogram():
tractogram = []

horizontal_points = np.array([[0, center, center],

(continues on next page)

2.5. Concatenating linear operators 31

talon Documentation, Release 0.2.0

(continued from previous page)

[image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

for k in range(streamlines_per_bundle):
new_streamline = horizontal_streamline.copy()
new_streamline[:,1] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

vertical_points = np.array([[center, 0, center],
[center, image_size - 1, center]])

vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

for k in range(streamlines_per_bundle):
new_streamline = vertical_streamline.copy()
new_streamline[:,0] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

return tractogram

cross_tractogram = generate_crossing_tractogram()
directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(cross_tractogram, directions, image_shape)

A = talon.operator(generators, indices, lengths)

Vertical concatenation

If multiple features for each streamline are encoded in different linear operators we can concatenate different linear
operators vertically. If 𝐴 encodes the linear operator for the set of streamlines 𝛼 and generators 𝐺1 and 𝐵 encodes the
linear operator for the same streamlines but with generators 𝐺2, instead of rebuilding the linear operator from scratch
we can concatenate 𝐴 and 𝐵 vertically to obtain the same result.

G2 = np.random.rand(len(directions), 5) # New generators
B = talon.operator(G2, indices, lengths)

V = talon.concatenate((A,B), axis=0)

print('Shape of A: {}'.format(A.shape))
print('Shape of B: {}'.format(B.shape))
print('Shape of V: {}'.format(V.shape))
print('Check: {} + {} = {}'.format(A.shape[0], B.shape[0], A.shape[0] + B.shape[0]))

Notice that the axis=0 argument is redundant since it is the default.

The output should be the following:

Shape of A: (15625, 100)
Shape of B: (78125, 100)
Shape of V: (93750, 100)
Check: 15625 + 78125 = 93750

32 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Horizontal concatenation

One (but not the only) reason to concatenate two linear operators horizontally is to add a set of streamlines to the
system. If 𝐴 encodes the linear operator for the set of streamlines 𝛼 and 𝐶 for set 𝛽, instead of rebuilding the linear
operator from scratch we can concatenate 𝐴 and 𝐶 horizontally to obtain the same result.

def generate_diagonal_tractogram():
tractogram = []
diagonal_points = np.array([[0, center, center],

[center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

for k in range(streamlines_per_bundle):
new_streamline = diagonal_streamline.copy()
new_streamline[:,0] += (np.random.rand(1) - 0.5)
new_streamline[:,1] += (np.random.rand(1) - 0.5)
tractogram.append(new_streamline)

return tractogram

diag_tractogram = generate_diagonal_tractogram()
indices, lengths = talon.voxelize(diag_tractogram, directions, image_shape)

C = talon.operator(generators, indices, lengths) # diagonal

The concatenation of the two linear operators is performed as follows:

H = talon.concatenate([A, C], axis=1)
print('Shape of A: {}'.format(A.shape))
print('Shape of C: {}'.format(C.shape))
print('Shape of H: {}'.format(H.shape))

The output should be the following:

Shape of A: (15625, 100)
Shape of C: (15625, 50)
Shape of H: (15625, 150)

The matrix multiplication and transposition operations work as usual:

x = H @ np.random.rand(H.shape[1])
y = H.T @ np.random.rand(H.shape[0])

print('Shape of x: {}'.format(x.shape))
print('Shape of y: {}'.format(y.shape))

The output should be the following:

Shape of x: (15625,)
Shape of y: (150,)

2.5. Concatenating linear operators 33

talon Documentation, Release 0.2.0

2.6 Create linear operator from volume

It may be interesting to create linear operators that describe a single contribution for each voxel as in a volume mask.
This can be encoded as follows: ⎡⎢⎢⎢⎣

𝑤1 · g
𝑤2 · g

. . .
𝑤𝑛 · g

⎤⎥⎥⎥⎦
where g is the generator used for every voxel and 𝑤𝑗 is the value of the mask at voxel 𝑗. Only the voxels exhibiting
non-zero value are considered.

To build such a linear operator, one just needs to provide a three-dimensional ndarray to the talon.diagonalize function.

2.6.1 Example

Let us build a toy volume of dimension 2-by-2-by-2 with values from 0 to 7.

import numpy as np
values = np.arange(2 ** 3).astype(np.float64)

mask = values.reshape((2,) * 3)
print(mask)

Output:

[[[0. 1.]
[2. 3.]]

[[4. 5.]
[6. 7.]]]

To diagonalize the volume, call the corresponding talon function.

import talon
indices, weights = talon.diagonalize(mask)

The considered generator is vector 𝑔 = [1, 10]𝑇 .

generators = np.array([[1.0, 10.0]])
linear_operator = talon.operator(generators, indices, weights)

Check the output:

print(linear_operator.todense())

[[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0.]
[10. 0. 0. 0. 0. 0. 0.]
[0. 2. 0. 0. 0. 0. 0.]
[0. 20. 0. 0. 0. 0. 0.]
[0. 0. 3. 0. 0. 0. 0.]
[0. 0. 30. 0. 0. 0. 0.]

(continues on next page)

34 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

(continued from previous page)

[0. 0. 0. 4. 0. 0. 0.]
[0. 0. 0. 40. 0. 0. 0.]
[0. 0. 0. 0. 5. 0. 0.]
[0. 0. 0. 0. 50. 0. 0.]
[0. 0. 0. 0. 0. 6. 0.]
[0. 0. 0. 0. 0. 60. 0.]
[0. 0. 0. 0. 0. 0. 7.]
[0. 0. 0. 0. 0. 0. 70.]]

2.7 Functions

talon.concatenate(operators, axis=0)
Concatenate a sequence of linear operator along axis 0 or 1.

This method defines the object that acts as the concatenation of the linear operators contained in the list/tuple
operators along the chosen axis. The syntax is consistent with the one of np.concatenate.

Parameters

• operators – list or tuple of LinearOperator objects to be concatenated in the same axis.

• axis – int direction in which we want to concatenate the LinearOperator or Concatenated-
LinearOperator objects that we want to concatenate. Vertical concatenation is obtained for
axis = 0 and horizontal concatenation is obtained for axis = 1 as in np.concatenate. (Default:
0)

Returns

the concatenated linear operator.

Return type talon.core.ConcatenatedLinearOperator

talon.diagonalize(mask)
Returns the matrices used to create a linear operator from a mask

This functions transforms a volume mask into the weights and indices components that are necessary to build
a linear operator. It is assumed that the all the voxels in the mask will share a common generator. The indexed
generator is therefore unique, corresponds to index zero, and is weighted by the value contained in the mask at
the specific voxel.

Parameters mask – np.ndarray with three dimensions that contains the weight to be associated to
each voxel. Only voxels with non-zero weight are considered.

Returns

tuple of length 2 containing

• index_sparse [diagonal scipy.sparse matrix with a shape of (n, m)] where n is the number
of voxels of the volume and m in the number of voxels of the mask.

• weight_sparse [diagonal scipy.sparse matrix with a shape of (n, m)] containing the value
of the mask at each non-zero voxel in the same fashion as index_sparse.

Raises

• TypeError – If the the mask is not a numpy.ndarray.

• ValueError – If the mask does not have three dimensions.

2.7. Functions 35

talon Documentation, Release 0.2.0

talon.operator(generators, indices_of_generators, weights, operator_type='fast')
Create a LinearOperator object.

This method defines the object that describes the linear operator by means of its fundamental components.
These components are a set of generators, a table that encodes the non-zero entries of the operator and indexes
the proper generator in each entry and another table that encodes the weight applied to each called generator in
the linear operator.

Each block of entries of the linear operator A is given by

𝐴[𝑘 · 𝑖 . . . 𝑘 · (𝑖 + 1), 𝑗] = 𝑔𝑇𝑖,𝑗 · 𝑤𝑖,𝑗

where k is the length of the generators, T is the table of indices and w is the table of weights.

Parameters

• generators – np.array where each row is a generator.

• indices_of_generators – COO sparse matrix that tells which generator is called
where in the linear operator.

• weights – COO sparse matrix that encodes the weight applied to each generator indexed
by indices_of_generators. It has the same dimension as indices_of_generators.

• operator_type (optional) – string Operator type to use. Accepted values are
'fast', 'opencl', and 'reference'. The latter is intended to be used only for
testing purposes. (default = fast).

Returns the wanted linear operator.

Return type talon.core.LinearOperator

Raises ValueError – If reference_type is not 'fast' or 'reference'.

talon.regularization(non_negativity=False, regularization_parameter=None, groups=None,
weights=None)

Get regularization term for the optimization problem.

By default this method returns an object encoding the regularization term

Ω(𝑥) = 0.

If regularization_parameter, groups and weights are all not None it returns the structured sparsity regularization.

Ω(𝑥) = 𝜆
∑︁
𝑔∈𝐺

𝑤𝑔‖𝑥𝑔‖2

where 𝜆 is regularization_parameter, 𝑤𝑔 is the entry of w associated to g, 𝑥𝑔 is the subset of entries of x encoded
by the indices of g and G is the list of groups.

If non_negativity is True it adds the non-negativity constraint to the regularization term.

Ω(𝑥)← Ω(𝑥) + 𝜄≥0(𝑥).

Parameters

36 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

• non_negativity – boolean (default = False)

• regularization_parameter – float. Must be >= 0 (default = None)

• groups – list of lists where each element encodes the indices of the streamlines belonging
to a single group. (default = None).

E.g.: groups = [[0,2,5], [1,3,4,6], [7,8,9]].

• weights – ndarray of the same length as groups. Weight associated to each group. (default
= None)

Returns

instance of one between

• talon.optimize.NoRegularization;

• talon.optimize.NonNegativity;

• talon.optimize.StructuredSparsity;

• talon.optimize.NonNegativeStructuredSparsity.

Raises

• ValueError – If weights and groups do not have the same length.

• ValueError – If regularization_parameter < 0 .

talon.solve(linear_operator: talon.core.LinearOperator, data: numpy.ndarray, reg_term: Op-
tional[talon.optimization.RegularizationTerm] = None, cost_reltol: float = 1e-06, x_abstol:
float = 1e-06, max_nit: int = 1000, x0: Optional[numpy.ndarray] = None, verbose: str =
'LOW')→ scipy.optimize.optimize.OptimizeResult

Fit the solution.

This routine finds the x that solves the problem

min
𝑥

0.5‖𝐴𝑥− 𝑦‖2 + Ω(𝑥)

where x is the vector of coefficients to be retrieved, A is the linear operator, y is the data vector and Ω is defined
as in talon.regularization.

Parameters

• linear_operator – linear operator endowed with the @ operation.

• data – ndarray of data to be fit. First dimension must be compatible with the second of
linear_operator.

• reg_term – regularization term defined by talon.regularization. (default: Ω(𝑥) = 0.0)

• cost_reltol – float relative tolerance on the cost (default = 1e-6).

• x_abstol – float mean abs tolerance on the variable (default = 1e-6).

• max_nit – int maximum number of iterations (default = 1000).

• x0 – ndarray starting value for the optimization. The length must be the equal to the second
dimension of linear_operator. (default=zeros)

• verbose – {‘NONE’, ‘LOW’, ‘HIGH’, ‘ALL’} The log level : 'NONE' for no log, 'LOW'
for resume at convergence, 'HIGH' for info at all solving steps, 'ALL' for all possible
outputs, including at each steps of the proximal operators computation (default=’LOW’).

2.7. Functions 37

talon Documentation, Release 0.2.0

Returns

dictionary with the following fields

• x : estimated minimizer of the cost function.

• status : attribute of talon.optimization.ExitStatus enumeration.

• message : string that explains the reason for termination.

• fun : evaluation of each term at the minimizer.

• nit : number of performed iterations.

• reg_param: value of the regularization parameter.

Return type scipy.optimize.OptimizeResult

talon.voxelize(streamlines, vertices, image_shape, step=0.04)
Transform a tractogram into the matrices that are necessary to build a linear operator.

Parameters

• streamlines – list of streamlines in voxel space. The coordinates of each voxel are
assumed to point at the center of the voxel itself.

• vertices – Nx3 np.array, vertices of an unit sphere in which we sample the streamlines
direction.

• image_shape – tuple, final shape of the mask image.

• step – double, streamlines interpolation step.

Returns

tuple of length 2 containing

• index_sparse [(voxel x streamlines) scipy.sparse matrix containing] for each voxel and
fiber the index of the vertices that it is closest to the streamline direction in that voxel.

• length_sparse [(voxel x streamlines) scipy.sparse matrix containing] for each voxel and
fiber the length of the streamline in that voxel.

Raises ValueError – If the streamlines are not in voxel space.

talon.zeros(shape: Tuple[int, int], dtype: type = <class 'numpy.float64'>)→ talon.core.LinearOperator
Create a zero filled linear operator

Returns a zero filled talon linear operator. Useful in combination with talon.concatenate.

Parameters

• shape – The shape of the linear operator.

• dtype (optional) – The datatype of the linear operator.

Returns A talon linear operator filled with zeros.

talon.utils.check_pattern_iw(indices_of_generators: scipy.sparse.coo.coo_matrix, weights:
scipy.sparse.coo.coo_matrix)→ None

Check if the sparsity pattern of the indices and the weights are the same.

This function performs a complete check on the sparsity pattern of the indices_of_generators and the weights
matrices. If the two matrices have a different number of non-empty entries or the non-empty entries are in
different locations, it raises an error.

If the two matrices came out of talon.voxelization, this check is not necessary.

38 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Note: This function is very expensive in terms of memory and time.

Parameters

• indices_of_generators – sp.coo_matrix of the indices.

• weights – sp.coo_matrix of the weights.

Raises ValueError – If weights and indices_of_generators don’t have the same sparsity pattern.

talon.utils.concatenate_giw(giws: Iterable, axis: int = 0)→ tuple
Concatenates generators, indices, and weights along an existing axis

The indices and weights are concatenated along the supplied axis and the generators along axis 1. The generators
must have the same number of columns. The indices and weights must have the same shape, except in the
dimension corresponding to axis.

Parameters

• giws – An iterable of (generator, indices, weights) to concatenate e.g. [(g1, i1, w1), (g2,
i2, w2)].

• axis – The axis along which the indices and weights will be joined. Default is 0.

Returns The concatenated generators, indices, and weights.

talon.utils.directions(number_of_points: int = 180)→ numpy.ndarray
Get a list of 3D vectors representing the directions of the fibonacci covering of a hemisphere of radius 1 com-
puted with the golden spiral method. The 𝑧 coordinate of the points is always strictly positive.

Parameters number_of_points – number of points of the wanted covering (default=180)

Returns

number_of_points x 3 array with the cartesian coordinates of a point of the covering in
each row.

Return type ndarray

Raises ValueError – if number_of_points <= 0 .

References

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere/44164075#44164075

talon.utils.mask_data(data: numpy.ndarray, linear_operator: talon.core.LinearOperator) →
numpy.ndarray

Mask the data using the mask that covers only the entries that are affected by the linear operator. This prevents
numerical errors in the solution of the optimization problem.

Parameters

• data – np.ndarray one dimensional array that contains the data to mask.

• linear_operator – LinearOperator object that contains the self.data_mask attribute to
be used as a mask.

Returns np.ndarray with the same dimension as data where the entries corresponding to the False
entries of the mask have been set to zero.

2.7. Functions 39

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere/44164075#44164075

talon Documentation, Release 0.2.0

2.8 Classes

2.8.1 Linear Operator

class talon.core.AbstractLinearOperator(*args, **kwargs)
Abstract class for all linear operators

This abstract class defines the interface that all linear operators in talon must implement.

property T
Returns the transpose of the linear operator.

convert_x(x)
Converts x so that it can be used on the right of a dot product.

This method converts x so that it has the right dimensions and type to be used as a right operand of a dot
product with a linear operator. That is, it asserts that A @ x will work. Raises exceptions if the input
cannot be converted to the correct format.

Parameters x – The vector to test.

Returns A numpy array that can be used in the dot product.

Return type x

Raises

• TypeError – If x is not a numpy array.

• ValueError – If the length of x does not match the number of columns of the linear
operator.

abstract property data_mask
Returns the mask to apply to the data to keep only the entries covered by the linear operator.

property dtype
Returns the data type of the linear operator

abstract property shape
Returns the shape of the matrix.

abstract property todense
Returns a dense matrix representation of the linear operator.

abstract property transpose
Returns the transpose of the linear operator.

CPU

class talon.core.LinearOperator(*args, **kwargs)

__init__(generators, indices_of_generators, weights)
Linear operator that maps tractography to signal space. The linear operator can be used to compute prod-
ucts with a vector.

Parameters

• generators – np.array where each row is a generator.

• indices_of_generators – COO sparse matrix that tells which generator is called
where in the linear operator.

40 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

• weights – COO sparse matrix that encodes the weight applied to each generator indexed
by indices_of_generators. It has the same dimension as indices_of_generators.

Raises

• TypeError – If generators is not a numpy ndarray of float.

• TypeError – If indices_of_generators is not a COO scipy matrix.

• TypeError – If weights is not a COO scipy matrix of float64.

• ValueError – If weights does not have the same dimension as indices_of_generators.

property columns
Returns the indices of the nonzero columns.

Type int

property data_mask
Returns the mask to apply to the data to keep only the entries covered by the linear operator.

property generator_length
length of each generator (constant across generators).

Type int

property generators
Returns the generators of the linear operator.

Type np.ndarray

property indices
Returns the generator indices.

Type np.ndarray

property nb_atoms
Number of atoms (columns) in the linear operator.

Type int

property nb_data
Number of data points.

Type int

property nb_generators
Number of generators.

Type int

property rows
Returns the indices of the nonzero rows.

Type int

property shape
Shape of the linear operator.

The shape is given by the number of rows and columns of the linear operator. The number of rows is equal
to the number of data points times the length of the generators. The number of columns is equal to the
number of atoms.

Type tuple of int

2.8. Classes 41

talon Documentation, Release 0.2.0

todense()
Return the dense matrix associated to the linear operator.

Note: The output of this method can be very memory heavy to store. Use at your own risk.

Returns full matrix representing the linear operator.

Return type ndarray

property transpose
the transpose of the linear operator.

Type _TransposedLinearOperator

property weights
The weights of the nonzero elements

Type np.ndarray

class talon.fast.LinearOperator(*args, **kwargs)

__init__(generators, indices_of_generators, weights)
A LinearOperator that computes products quickly.

The FastLinearOperator class implements a linear operator optimized to compute matrix-vector products
quickly. It is single threaded and written in pure Python, which makes it a good default choice for linear
operators.

Parameters

• generators – np.array where each row is a generator.

• indices_of_generators – COO sparse matrix that tells which generator is called
where in the linear operator.

• weights – COO sparse matrix that encodes the weight applied to each generator indexed
by indices_of_generators. It has the same dimension as indices_of_generators.

Raises

• TypeError – If generators is not a numpy ndarray of float64.

• TypeError – If indices_of_generators is not a COO scipy matrix.

• TypeError – If weights is not a COO scipy matrix of float64.

• ValueError – if weights does not have the same dimension as indices_of_generators.

• ValueError – if weights and indices_of_generators don’t have the same sparsity pat-
tern.

property transpose
Returns the transpose of the linear operator.

class talon.core.ConcatenatedLinearOperator(*args, **kwargs)

__init__(operators, axis)
Concatenated LinearOperator object

The ConcatenatedLinearOperator class implements the vertical or horizontal concatenation of LinearOp-
erator objects.

42 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

Parameters

• operators – list or tuple of LinearOperator objects to be concatenated in the same axis.

• axis – int direction in which we want to concatenate the LinearOperator or Concatenat-
edLinearOperator objects that we want to concatenate. Vertical concatenation is obtained
for axis = 0 and horizontal concatenation is obtained for axis = 1 as in np.concatenate.
(Default: 0)

Raises

• TypeError – If any element of operator is not an instance of LinearOperator or Con-
catenatedLinearOperator.

• TypeError – If operators is not a list or a tuple.

• ValueError – If axis is not 0 or 1.

• ValueError – If operators is an empty list or tuple.

• ValueError – If the operators do not have compatible dimensions.

property axis
axis in which the concatenation was performed.

Type int

property data_mask
Returns the mask to apply to the data to keep only the entries covered by the linear operator.

property operators
list of concatenated operators.

Type list

property shape
Shape of the concatenated linear operator.

Type tuple of int

todense()
Return the dense matrix associated to the linear operator.

Note: The output of this method can be very memory heavy to store. Use at your own risk.

Returns full matrix representing the linear operator.

Return type ndarray

property transpose
transpose of the linear operator.

Type TransposedConcatenatedLinearOperator

2.8. Classes 43

talon Documentation, Release 0.2.0

GPU

class talon.opencl.LinearOperator(*args, **kwargs)

__init__(generators, indices_of_generators, weights, chunk_size=100000000)
Linear operator implemented with OpenCL

A linear operator that has a sparse vector structure. The product between this operator and a vector is
implemented using OpenCL.

Parameters

• generators – np.array where each row is a generator.

• indices_of_generators – COO sparse matrix that tells which generator is called
where in the linear operator.

• weights – COO sparse matrix that encodes the weight applied to each generator indexed
by indices_of_generators. It has the same dimension as indices_of_generators.

• chunk_size – The product is computed by splitting the linear operator into chunks.
This parameter determines the approximate chunk size. Reducing this value reduces the
amount of memory required on the device.

Raises

• TypeError – If generators is not a numpy array of float.

• TypeError – If indices_of_generators is not a COO scipy matrix.

• TypeError – If weights is not a COO scipy matrix of float64.

• ValueError – If weights does not have the same dimension as indices_of_generators.

• ValueError – If weights and indices_of_generators don’t have the same sparsity pat-
tern.

property dtype
Returns the data type of the linear operator

todense()→ numpy.ndarray
Return the dense matrix associated with the linear operator.

Note: The output of this method can be very memory heavy to store. Use at your own risk.

Returns Full matrix representing the linear operator.

property transpose
transpose of the linear operator.

Type TransposedFastLinearOperator

44 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

2.8.2 Regularization Term

class talon.optimization.RegularizationTerm(regularization_parameter: float)

__init__(regularization_parameter: float)
Abstract base class for all regularization terms

The optimization problem solved by talon is

min
𝑥

0.5‖𝐴𝑥− 𝑦‖2 + Ω(𝑥)

where Ω is a regularization term. This class is the base for all concrete implementations of this term.

Parameters regularization_parameter – float The scaling factor of the regularization
term. Must be a float greater or equal to zero.

Raises

• TypeError – If the regularization parameter is not a float and cannot be converted to a
float.

• ValueError – If the regularization parameter is negative.

property groups
Get the group structure associated to the regularization term.

Returns: list List of lists of streamline indices.

property non_negativity
Get the activation of the non-negativity constraint.

Returns: bool True if the non-negativity constraint is employed, False otherwise.

property regularization_parameter
Get the regularization parameter.

Returns: float The value of the regularization parameter.

property weights
Get the weight associated to each group.

Returns: np.ndarray 1-dimensional numpy array with one weight per group.

class talon.optimization.NoRegularization

__init__()
Instantiates the zero-valued regularization term.

Ω(𝑥) = 0

class talon.optimization.NonNegativity

__init__()
Instantiates the non-negativity constraint regularization function.

Ω(𝑥) = 𝜄≥0(𝑥)

2.8. Classes 45

talon Documentation, Release 0.2.0

class talon.optimization.StructuredSparsity(regularization_parameter: float, groups: list,
weights: numpy.ndarray)

__init__(regularization_parameter: float, groups: list, weights: numpy.ndarray)
Instantiates the structured sparsity regularization term.

Ω(𝑥) = 𝜆 ·
∑︁
𝑔∈𝐺

𝑤𝑔 · ‖𝑥𝑔‖2

Parameters

• regularization_parameter – float Value of the regularization parameter.

• groups – list List of lists of streamline indices.

• weights – np.ndarray 1-dimensional numpy array with one weight per group.

class talon.optimization.NonNegativeStructuredSparsity(regularization_parameter,
groups, weights)

__init__(regularization_parameter, groups, weights)
Instantiates the non-negative structured sparsity regularization term.

Ω(𝑥) = 𝜄≥0(𝑥) + 𝜆 ·
∑︁
𝑔∈𝐺

𝑤𝑔 · ‖𝑥𝑔‖2

Parameters

• regularization_parameter – float Value of the regularization parameter.

• groups – list List of lists of streamline indices.

• weights – np.ndarray 1-dimensional numpy array with one weight per group.

class talon.optimization.ExitStatus(value)
Exit criteria of the optimization routine.

2.9 CLI module

These functions are available at the talon.cli module, which must be imported separately.

import talon
import talon.cli

2.9.1 Utils

talon.cli.utils.add_ndir_to_input(parser: argparse.ArgumentParser)
This function adds the number of directions as input argument to a parser.

The --ndir argument is added to parser. The argument takes as input an integer which by default is equal
to 1000.

Parameters parser – argparse.ArgumentParser Argument parser.

talon.cli.utils.add_verbosity_and_force_to_parser(parser: argparse.ArgumentParser)
This function adds the verbosity and force parameters to a parser.

After calling this method, the input parser will have the following boolean arguments.

46 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

• --force

• --quiet

• --warn

• --info

• --debug

Parameters parser – argparse.ArgumentParser Argument parser.

talon.cli.utils.assignment_to_mapping(fpath: str, undirected: bool = True) → collec-
tions.defaultdict

This function creates a mapping object from a streamline assignment file.

Parameters

• fpath – str Path to the file whose rows contain the assignment of each streamline. E.g., if
the n-th row is ‘5 17’, the n-th streamline is assigned to regions 5 and 17. The region labels
must be integer values and separated by a blank space. Lines starting with # are skipped.

• undirected – bool True if the mapping must be undirected, False otherwise.

Returns

defaultdict Dictionary with keys being pairs of regions connected by streamlines and values
being the list of streamline indices of those streamlines connecting the corresponding re-
gions.

talon.cli.utils.check_can_write_file(fpath: str, force: bool = False)
Check if a file can be written.

The function checks if the file already exists, the user has the permission to write it, overwriting can be forced
and, if the file does not exist, if the parent directory exists and is writable.

Parameters

• fpath – str path of the file to be checked.

• force – bool True if the file can be overwritten, False otherwise.

Raises

• FileExistsError – if the file exists and can not be overwritten.

• PermissionError – if the file esists and the user does not have the permission to write
it.

• PermissionError – if the file does not exist, the parent directory exists and the user
does not have the permission to write a file in it.

• FileNotFoundError – if file does not exist and the parent directory does not exist.

talon.cli.utils.mapping_to_groups_weights(mapping: collections.defaultdict, connectome:
Optional[numpy.ndarray] = None) -> (<class
'list'>, <class 'numpy.ndarray'>)

Extract the streamline groups and weights from a mapping object.

Groups are lists of streamline indices that form a bundle. Weights are defined as follows: let 𝑁𝑔 be the number
of streamlines in group 𝑔, and let 𝑐𝑔 be the connectivity between the regions linked by streamline bundle 𝑔. Each
group 𝑔 is then associated to a weight equal to

𝑤𝑔 = [𝑁𝑔 · (1 + 𝑐𝑔)]−1.

2.9. CLI module 47

talon Documentation, Release 0.2.0

Parameters

• mapping – defaultdict dictionary with keys being pairs of regions connected by stream-
lines and values being the list of streamline indices of those streamlines connecting the
corresponding regions.

• connectome – np.ndarray connectivity matrix to be employed. The first row and column
correspond to the zero label.

Returns

tuple of length 2

• list of groups

• 1-dimensional np.ndarray with one weight per group

talon.cli.utils.parse_verbosity(args: argparse.Namespace)
This function applies the wanted verbosity level in logging specified by the parsed arguments given in input.

The default level is logging.WARNING.

Parameters args – argparse.Namespace Namespace parsed from inputs.

talon.cli.utils.setup_parser(**kwargs)→ argparse.ArgumentParser
Setup TALON argument parser.

This function returns an argparse.ArgumentParser object with allow_abbrev=True and
add_help=True.

Parameters kwargs – dict dictionary that will be passed to the constructor of arg-
parse.ArgumentParser.

Returns argparse.ArgumentParser object with the passed options plus allow_abbrev=True and
add_help=True

2.9.2 Commands

Filter

talon.cli.commands.filter.run(in_tracks: str, in_data: str, out_weights: str,
force: bool, ndir: int, precomputed_indices_weights:
List[str], save_generators_indices_weights: List[str],
save_operator_pickle: str, operator_type: str, stream-
line_assignment: str, connectome: str, sigma: float, al-
low_negative_x: bool, maxiter: int, objective_relative_tolerance:
float, x_absolute_tolerance: float, **kwargs)

Parameters

• in_tracks – str Input tractogram file in RAS+ and mm space. The streamline coordinate
(0,0,0) refers to the center of the voxel. Must be in NiBabel-readable format (.trk or .tck).

• in_data – str Input data to be fitted. Serves also as reference space for tractogram. Must
be in NiBabel-readable format (.nii or .nii.gz).

• out_weights – str Output text file containing the streamline weights.

• force – bool True if the file can be overwritten, False otherwise.

• ndir – int Number of directions for the voxelization.

48 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

• precomputed_indices_weights – List Uses the indices and weights passed as input
to build the linear operator. The two matrices must be defined on the same number of
directions (ndir) as the ones that are used at the call of this script.

• save_generators_indices_weights – List Saves the linear operator as three sep-
arate files.

• save_operator_pickle – str Saves the linear operator with pickle. Only available
when operator_type is ‘fast’ or ‘reference’.

• operator_type – str Type of operator to use. Default: fast. Choiches: ‘reference’,
‘fast’, ‘opencl’.

• streamline_assignment – str Path to the file whose rows contain the assignment of
each streamline. E.g., if the n-th row is ‘5 17’, the n-th streamline is assigned to regions
5 and 17. The region labels must be integer values and separated by a blank space. Lines
starting with # are skipped.

• connectome – str Path to the connectivity matrix to be employed in txt format. The first
row and column correspond to the zero label.

• sigma – float Sets the regularization scale parameter as in (Frigo, 2021). The final value of
lambda is sigma*max(||At*data||/gwei), where sigma is the passed parameter, ||At*data|| is
the 2-norm of the product between the transposed linear operator and the data, and gwei is
the vector of the weights associated to each group of streamlines.

• allow_negative_x – bool Disables the non negativity constraint.

• maxiter – int Sets maximum number of iterations. Default: 1000.

• objective_relative_tolerance – float Sets relative tolerance on cost function.
Default: 1e-6.

• x_absolute_tolerance – float Sets absolute tolerance on variable. Default: 1e-6.

Voxelize

talon.cli.commands.voxelize.run(in_tracks, in_img, out_ind, out_wei, force, ndir, **kwargs)
This function reads tractogram files and writes the corresponding indices and weights files.

Parameters

• in_tracks – str Tractogram file to be voxelized in RAS+ and mm space. The streamline
coordinate (0,0,0) refers to the center of the voxel. Must be in NiBabel-readable format (.trk
or .tck).

• in_img – str Image serving as space reference. Must be in NiBabel-readable format (.nii
or .nii.gz).

• out_ind – str Path where the indices will be saved in .npz format.

• out_wei – str Path where the weights will be saved in .npz format.

• force – bool True if the file can be overwritten, False otherwise.

• ndir – Number of directions for the voxelization.

2.9. CLI module 49

talon Documentation, Release 0.2.0

2.10 How to cite talon

If you use talon in your research, please cite the package in the following format.

First Author, Second Author, Third Author. TALON: Tractograms As Linear Operators in Neuroimaging.
CoBCoM, 2021.

@misc{cobcomtalon,
author = {Author, First and Author, Second and Author, Third},
title = {TALON: Tractograms As Linear Operators in Neuroimaging},
howpublished = {CoBCoM},
year = {2021}

}

2.11 List of Contributors

Talon was conceived in the ATHENA Project Team at Inria Sophia Antipolis - Méditerranée. The package was initially
developed within the Computational Brain Connectivity Mapping (CoBCoM) project by:

• Samuel Deslauriers-Gauthier, ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

• Matteo Frigo , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

• Mauro Zucchelli , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

The project is currently maintained by:

• Samuel Deslauriers-Gauthier, ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

• Matteo Frigo , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

2.12 License

MIT License

Copyright (c) 2021 CoBCoM

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

50 Chapter 2. Contributing guidelines

talon Documentation, Release 0.2.0

2.13 Funding

The development of talon was funded by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM - Computational Brain
Connectivity Mapping).

2.13. Funding 51

https://project.inria.fr/cobcom/
https://project.inria.fr/cobcom/

talon Documentation, Release 0.2.0

52 Chapter 2. Contributing guidelines

BIBLIOGRAPHY

[2009b] Beck, Amir, and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems.” SIAM journal on imaging sciences 2.1 (2009): 183-202.

[2011j] Jenatton, Rodolphe, et al. “Proximal methods for hierarchical sparse coding.” Journal of Machine Learning
Research 12.Jul (2011): 2297-2334.

53

talon Documentation, Release 0.2.0

54 Bibliography

PYTHON MODULE INDEX

t
talon, 35
talon.cli.commands.filter, 48
talon.cli.commands.voxelize, 49
talon.cli.utils, 46
talon.utils, 38

55

talon Documentation, Release 0.2.0

56 Python Module Index

INDEX

Symbols
__init__() (talon.core.ConcatenatedLinearOperator

method), 42
__init__() (talon.core.LinearOperator method), 40
__init__() (talon.fast.LinearOperator method), 42
__init__() (talon.opencl.LinearOperator method),

44
__init__() (talon.optimization.NoRegularization

method), 45
__init__() (talon.optimization.NonNegativeStructuredSparsity

method), 46
__init__() (talon.optimization.NonNegativity

method), 45
__init__() (talon.optimization.RegularizationTerm

method), 45
__init__() (talon.optimization.StructuredSparsity

method), 46

A
AbstractLinearOperator (class in talon.core), 40
add_ndir_to_input() (in module talon.cli.utils),

46
add_verbosity_and_force_to_parser() (in

module talon.cli.utils), 46
assignment_to_mapping() (in module

talon.cli.utils), 47
axis() (talon.core.ConcatenatedLinearOperator prop-

erty), 43

C
check_can_write_file() (in module

talon.cli.utils), 47
check_pattern_iw() (in module talon.utils), 38
columns() (talon.core.LinearOperator property), 41
concatenate() (in module talon), 35
concatenate_giw() (in module talon.utils), 39
ConcatenatedLinearOperator (class in

talon.core), 42
convert_x() (talon.core.AbstractLinearOperator

method), 40

D
data_mask() (talon.core.AbstractLinearOperator

property), 40
data_mask() (talon.core.ConcatenatedLinearOperator

property), 43
data_mask() (talon.core.LinearOperator property),

41
diagonalize() (in module talon), 35
directions() (in module talon.utils), 39
dtype() (talon.core.AbstractLinearOperator property),

40
dtype() (talon.opencl.LinearOperator property), 44

E
ExitStatus (class in talon.optimization), 46

G
generator_length() (talon.core.LinearOperator

property), 41
generators() (talon.core.LinearOperator property),

41
groups() (talon.optimization.RegularizationTerm

property), 45

I
indices() (talon.core.LinearOperator property), 41

L
LinearOperator (class in talon.core), 40
LinearOperator (class in talon.fast), 42
LinearOperator (class in talon.opencl), 44

M
mapping_to_groups_weights() (in module

talon.cli.utils), 47
mask_data() (in module talon.utils), 39
module

talon, 35
talon.cli.commands.filter, 48
talon.cli.commands.voxelize, 49
talon.cli.utils, 46

57

talon Documentation, Release 0.2.0

talon.utils, 38

N
nb_atoms() (talon.core.LinearOperator property), 41
nb_data() (talon.core.LinearOperator property), 41
nb_generators() (talon.core.LinearOperator prop-

erty), 41
non_negativity() (talon.optimization.RegularizationTerm

property), 45
NonNegativeStructuredSparsity (class in

talon.optimization), 46
NonNegativity (class in talon.optimization), 45
NoRegularization (class in talon.optimization), 45

O
operator() (in module talon), 35
operators() (talon.core.ConcatenatedLinearOperator

property), 43

P
parse_verbosity() (in module talon.cli.utils), 48

R
regularization() (in module talon), 36
regularization_parameter()

(talon.optimization.RegularizationTerm prop-
erty), 45

RegularizationTerm (class in talon.optimization),
45

rows() (talon.core.LinearOperator property), 41
run() (in module talon.cli.commands.filter), 48
run() (in module talon.cli.commands.voxelize), 49

S
setup_parser() (in module talon.cli.utils), 48
shape() (talon.core.AbstractLinearOperator property),

40
shape() (talon.core.ConcatenatedLinearOperator

property), 43
shape() (talon.core.LinearOperator property), 41
solve() (in module talon), 37
StructuredSparsity (class in talon.optimization),

45

T
T() (talon.core.AbstractLinearOperator property), 40
talon

module, 35
talon.cli.commands.filter

module, 48
talon.cli.commands.voxelize

module, 49
talon.cli.utils

module, 46
talon.utils

module, 38
todense() (talon.core.AbstractLinearOperator prop-

erty), 40
todense() (talon.core.ConcatenatedLinearOperator

method), 43
todense() (talon.core.LinearOperator method), 41
todense() (talon.opencl.LinearOperator method), 44
transpose() (talon.core.AbstractLinearOperator

property), 40
transpose() (talon.core.ConcatenatedLinearOperator

property), 43
transpose() (talon.core.LinearOperator property),

42
transpose() (talon.fast.LinearOperator property), 42
transpose() (talon.opencl.LinearOperator property),

44

V
voxelize() (in module talon), 38

W
weights() (talon.core.LinearOperator property), 42
weights() (talon.optimization.RegularizationTerm

property), 45

Z
zeros() (in module talon), 38

58 Index

	Getting help
	Contributing guidelines
	Installation
	Getting started
	CLI: Command Line Interface
	Solving the inverse problem
	Concatenating linear operators
	Create linear operator from volume
	Functions
	Classes
	CLI module
	How to cite talon
	List of Contributors
	License
	Funding

	Bibliography
	Python Module Index
	Index

