

Welcome to talon’s documentation!

[image: Pipeline Status]
 [https://gitlab.inria.fr/cobcom/talon/-/commits/master"][image: Coverage Report]
 [https://gitlab.inria.fr/cobcom/talon/-/commits/master][image: Documentation Status]
 [https://cobcom-talon.readthedocs.io/en/latest/?badge=latest]talon is a pure Python package that implements Tractograms As Linear
Operators in Neuroimaging.

The software provides the talon Python module, which includes all the
functions and tools that are necessary for filtering a tractogram.
In particular, specific functions are devoted to:

	Transforming a tractogram into a linear operator.

	Solving the inverse problem associated to the filtering of a tractogram.

	Perform these operations on a GPU.

The package is available at Pypi [https://pypi.org/project/cobcom-talon/]
and can be easily installed from the command line.

pip install cobcom-talon

Talon is a free software released under
MIT license [https://gitlab.inria.fr/cobcom/talon/-/blob/master/LICENSE]
and the documentation is available on
Read the Docs [https://cobcom-talon.readthedocs.io/].

Getting help

The preferred way to get assistance in running code that uses talon is
through the issue system of the
Gitlab repository [https://gitlab.inria.fr/cobcom/talon] where the source
code is available.
Developers and maintainers frequently check newly opened issues and will be
happy to help you.

Contributing guidelines

The development happens in the devel branch of the
Gitlab repository [https://gitlab.inria.fr/cobcom/talon], while the
master is kept for the stable releases only.
We will consider only merge requests towards the devel branch.

How to cite

If you publish works using talon, please cite us as indicated here:

Matteo Frigo, Mauro Zucchelli, Rachid Deriche, Samuel Deslauriers-Gauthier.
“TALON: Tractograms As Linear Operators in Neuroimaging.” CoBCoM, 2021.
https://hal.archives-ouvertes.fr/hal-03116143

In section How to cite talon you will find the Bibtex entry.

Install and Get Started

	Installation
	Check installation

	For developers

	Getting started
	Building a linear operator

	Generating data with a linear operator

	Explaining data with a linear operator

Command Line Interface

	CLI: Command Line Interface
	talon filter

	talon voxelize

Concepts

	Solving the inverse problem
	Defining regularization term

	Computing the solution

	Reading the result

	Examples

	Concatenating linear operators
	Examples

	Create linear operator from volume
	Example

API documentation

	Functions

	Classes
	Linear Operator

	Regularization Term

	CLI module
	Utils

	Commands

About the project

	How to cite talon

	List of Contributors

	License

	Funding

Installation

Talon runs only on Python 3.
The installation has the following dependencies:

	Numpy

	Scipy

	NiBabel

	PyUnLocBox

	PyOpenCL (only if you plan to exploit the GPU capabilities)

If you are an Anaconda user, you may want to create a dedicated talon-env
environment and populate it with the right dependencies, then install talon.

conda env create -n talon-env -f environment.yml
pip install cobcom-talon

Alternatively, you can install the dependencies and talon all via pip.

pip install numpy
pip install scipy
pip install nibabel
pip install pyunlocbox
pip install pyopencl # uncomment for GPU capabilities

pip install cobcom-talon

To install talon directly from the source, clone this repository and run the
standard local setup commands.

git clone https://gitlab.inria.fr/cobcom/talon.git
cd talon
pip install -U .

Check installation

To check that talon has been properly installed, try to import the talon
and the talon.cli modules into a Python session as follows. If no error is
raised, the installation has been successful.

>>> import talon
>>> import talon.cli

To further check that the GPU capabilities are active, try to import the
talon.opencl. If no error is raised, the installation has been successful.

>>> import talon.opencl

For developers

If you are thinking about developing your own fork of talon, you may want to
use the latest version in the devel branch of the repository and install it
in editable mode.

git clone https://gitlab.inria.fr/cobcom/talon.git
cd talon
git checkout devel
pip install -e .

Tests

The package uses unittest as a testing suite.
To run all the tests, execute the following command in the source’s root
directory.

python -m unittest -v

Test coverage can be checked with coverage as follows.

coverage run -m unittest
coverage report -m

Documentation

The sources of the documentation are in the doc folder.
The compilation requires the sphinx package and the theme to be installed.

pip install sphinx
pip install sphinx_rtd_theme

To compile the documentation, move to the doc folder and run
make <format>, where the format can be html, latex or any other
sphinx-compatible format.
To get a local copy of the the html documentation, run the make html
command.

cd doc
make clean # deletes results of previous compilations
make html

Getting started

The talon package, at its core, provides a way to transform a tractogram
into a linear operator, or more precisely a matrix.
This matrix can be used in two ways: to generate data and to explain data.
In both cases, the type of the data is arbitrary and is specified by the user,
not by talon. To quickly get you started, the following examples illustrate
both use cases.

If you haven’t already, start by installing talon.
See the Installation section.

This short introduction is separated into 3 parts:

	Building a linear operator

	Generating data with a linear operator

	Explaining data with a linear operator

To generate data using talon, we need a tractogram.
In general, you may use NiBabel’s tools such as nibabel.streamlines.load to
load your own tractogram. In this paragraph following paragraph we will show
how to define a simple synthetic tractogram composed of two crossing streamline
bundles.

import numpy as np
from scipy.interpolate import interp1d

The number of voxels in each dimension of the output image.
image_size = 25

center = image_size // 2
t = np.linspace(0, 1, int(image_size / 0.1))

Generate the horizontal and vertical streamlines.
horizontal_points = np.array([[0, center, center], [image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

vertical_points = np.array([[center, 0, center], [center, image_size - 1, center]])
vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

A tractogram is just a collection of streamlines.
tractogram = [horizontal_streamline, vertical_streamline]

To visualize the geometry of the streamlines, you can display them using
matplotlib.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()

[image: _images/getting-started-streamlines.png]

Building a linear operator

Now that we have a tractogram, we can start using talon.
First, we will voxelize the tractogram by separating each streamline into
voxel elements. If you are familiar with tractography, streamlines are generated
by following peaks of an image. Voxelizing a tractogram is the opposite i.e.
creating peaks from streamlines. In order to voxelize the tractogram, we first
need to provide a list of directions of the possible orientations of the
streamlines represented as an array of unit vectors.

import talon

directions = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float)
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)

Next we define how each streamline direction is projected onto the data.

generators = np.ones((len(directions), 1))

Finally, we build the linear operator \(A\).

A = talon.operator(generators, indices, lengths)

Note that generators can be multidimensional.
One way to illustrate this is to use the directions as generators.

G = talon.operator(directions, indices, lengths)

Generating data with a linear operator

To generate data simply multiply (using the @ operator) the linear operator
by a weight vector.

Using a vector off all ones gives all streamlines equal weight.
x = np.ones(A.shape[1])
b = A @ x

We can do the same thing with the multidimensional operator.
m = G @ x

The data vector b can be reshaped into an image and visualized.

image = b.reshape(image_shape)

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])
plt.colorbar(shrink=0.8)
plt.show()

An we obtain the following image which corresponds to the streamline density.

[image: _images/getting-started-density.png]
The second data vector can also be visualized, but requires a bit more
manipulation.

rgb_image = m.reshape(image_shape + (3,))

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(rgb_image[:, :, center])
plt.show()

[image: _images/getting-started-rgb.png]

Explaining data with a linear operator

Considering the case where an error in the tractography algorithm generates a
spurious streamline in our tractogram. In the case of our example, we simply
add a diagonal streamline to tractogram.

diagonal_points = np.array([[0, center, center], [center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

tractogram.append(diagonal_streamline)

Visualize the new tractogram.
fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')
ax.plot(tractogram[0][:,0], tractogram[0][:,1], tractogram[0][:,2], 'k')
ax.plot(tractogram[1][:,0], tractogram[1][:,1], tractogram[1][:,2], 'k')
ax.plot(tractogram[2][:,0], tractogram[2][:,1], tractogram[1][:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.show()

[image: _images/getting-started-spurious.png]
Given b, the data generated using by the original tractogram, we can use
talon to calculate the contribution of each streamline to the data. In order
to do so, we first have to generate a linear operator using the new
tractogram. In this case, we use also use a set of 1000 equally spaced unit
vectors as directions.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
Z = talon.operator(generators, indices, lengths)

What we want to find are the streamline contributions x which minimize

\[\frac{1}{2} || Z x - b||^2 + \Omega(x)\]

In this example it does not make sense to have streamlines with a negative
contribution, therefore, \(\Omega(x)\) will be set as a positivity
constraint. In talon, we can force positivity constraint using the
talon.regularization function.

positivity_constraint = talon.regularization(non_negativity=True)

The resulting regularization term is then given to the talon.solve function
in order to obtain the streamlines contributions.

solution = talon.solve(Z, b, reg_term=positivity_constraint)
print('solution.x = [%.2f, %.2f, %.2f]' % tuple(solution.x))

solution.x = [1.00, 1.00, 0.00]

As it is possible to see, the two original streamlines contribute equally to
the data while the third streamline does not contribute.

We can use the talon solution to filter the tractogram and visualize only
the streamlines presenting a non-zero contribution.

New filtered tractogram.
filtered_tractogram = []

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for i,s in enumerate(tractogram):

 # If the current streamline contributes to the data.
 if solution.x[i] > 0.0:

 # Add streamline to filtered tractogram.
 filtered_tractogram.append(s)

 # Visualize the streamline.
 ax.plot(s[:,0], s[:,1], s[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.show()

[image: _images/getting-started-filtered.png]

CLI: Command Line Interface

Talon provides a handy command line interface that allows to filter a
tractogram file and obtain the streamline coefficients in text format.

The main command is talon, which is installed together with the package (see
Installation) and allows to filter and voxelize a tractogram.

>>> talon --help
usage: talon [-h] {filter,voxelize} ...

Tractograms As Linear Operators in Neuroimaging - command line interface

positional arguments:
 {filter,voxelize}
 filter Filter a tractogram using TALON.
 voxelize Voxelize a tractogram using TALON.

optional arguments:
 -h, --help show this help message and exit

Copyright: CoBCoM 2021.

talon filter

The talon filter command allows to filter a given tractogram as in
Solving the inverse problem, but without the need to write any Python code.

The basic syntax that you’ll have to use is

talon filter streamlines.tck data.nii.gz streamline_weights.txt

where streamline.tck is the tractogram to be filtered, data.nii.gz is
what is being fit by the filtering process (we will get to that later) and
streamline_weights.txt is the text file where the streamline weights will
be saved.

Streamlines

The input tractogram must be in NiBabel-readable format,
i.e., in tck or trk format. In both cases, it is required to be in
RAS+ and mm space. The streamline coordinate (0,0,0) refers to the center of
the voxel.

Data

The input data must be a .nii/.nii.gz volume registered with the
tractogram. It contains the data fitted by talon. For the volume-fraction
model used by talon filter it has to encode the intra-axonal volume
fraction in each voxel.

Output weights

The output is a text file where the n-th row contains the
weight computed for the n-th streamline.

Group sparsity regularization

The command is able to take into account the bundle organization of the
streamlines. For a detailed presentation of how this is encoded as a
regularization term, please refer to Structured Sparsity.
This prior is activated by passing the option
--streamline-assignment sa.txt to talon solve.
The sa.txt file contains one row per streamline and the n-th row contains
the labels of the two regions connected by the n-th streamline.
For instance, a tractogram with three streamlines could correspond to the
following assignment file.

assignment file of subject ABC1234
3 15
7 2
15 3

The first row starts with #, hence will not be read by the program.
Then we have a streamline connecting regions 3 and 15, a second one connecting
regions 7 and 2 and a third streamline connecting regions 15 and 3.
The order of the labels is ignored by the program, hence the first and the
third streamlines are bundled together, while the second streamline forms
another bundle.

The assignment file is typically obtained via tck2connectome, which is
part of the
Mrtrix’s suite [https://mrtrix.readthedocs.io/en/3.0.2/reference/commands/tck2connectome.html].

tck2connectome \
 streamlines.tck atlas.nii.gz connectome.txt \
 -out_assignment streamline_assignment.txt

Using GPUs

Using a GPU can significantly speed up the execution. Before attempting to use
it, be sure to have PyOpenCL [https://pypi.org/project/pyopencl/] installed.
The use of the GPU processing capabilities is triggered by the
--operator-type option as follows.

--operator-type opencl

Other options

>>> talon filter --help
usage: talon filter [-h] [--operator-type {reference,fast,opencl}]
 [--ndir number] [--allow-negative-x] [--sigma value]
 [--streamline-assignment file] [--connectome file]
 [--objective-relative-tolerance value]
 [--x-absolute-tolerance value] [--maxiter count]
 [--precomputed-indices-weights file_idx file_wei]
 [--save-generators-indices-weights file_gen file_idx file_wei | --save-operator-pickle file]
 [--force] [--quiet | --warn | --info | --debug]
 in_tracks in_data out_weights

Use TALON to filter a tractogram with the Volume Fraction forward model.

positional arguments:
 in_tracks Input tractogram file in RAS+ and mm space. The
 streamline coordinate (0,0,0) refers to the center of
 the voxel. Must be in NiBabel-readable format (.trk or
 .tck).
 in_data Input data to be fitted. Serves also as reference
 space for tractogram. Must be in NiBabel-readable
 format (.nii or .nii.gz).
 out_weights Output text file containing the streamline weights.

optional arguments:
 -h, --help show this help message and exit
 --operator-type {reference,fast,opencl}
 Type of operator to use. Default: `fast`.
 --ndir number Number of directions for the voxelization. Default:
 1000.
 --precomputed-indices-weights file_idx file_wei
 Uses the indices and weights passed as input to build
 the linear operator. E.g. `--precomputed-indices-
 weights <indices>.npz <weights>.npz`. The two matrices
 must be defined on the same number of directions as
 the ones that are used at the call of this script.
 --save-generators-indices-weights file_gen file_idx file_wei
 Saves the linear operator as three separate files
 `<generators>.npy <indices>.npz <weights>.npz`. All
 types of operator can be saved in this format.
 --save-operator-pickle file
 Saves the linear operator with pickle. Only available
 when --operator-type is set to `reference` or `fast`.
 --force Overwrite existing files.
 --quiet Do not display messages.
 --warn Display warning messages.
 --info Display information messages.
 --debug Display debug messages.

Solver options:
 --allow-negative-x Disables the non negativity constraint.
 --sigma value Sets the regularization scale parameter as in (Frigo,
 2021). The final value of lambda is
 `sigma*max(||At*data||/gwei)`, where sigma is the
 passed parameter, `||At*data||` is the 2-norm of the
 product between the transposed linear operator and the
 data, and `gwei` is the vector of the weights
 associated to each group of streamlines. Default: 0.0.
 --streamline-assignment file
 Activates the group sparsity regularization by
 specifying the node assignments of each streamline to
 some parcellation. Typically, this file is produced by
 the Mrtrix3 command `tck2connectome` with the option
 `-out_assignment`. The file is expected to be in text
 format with one row per streamline. E.g., if the first
 row is [5, 14], the first streamline will be bundled
 together with all the streamlines corresponding rows
 having [5, 14] or [14, 5].
 --connectome file Activates the FIT regularization by specifying the
 connectivity matrix. Each streamline bundle is
 associated to the entry in the connectivity matrix
 corresponding to the region lables that it connects.
 E.g., the bundle connecting regions 5 and 14 is
 associated to the entry [5, 14] of the connectivity
 matrix. Notice that the first row and column
 correspond to the zero label. Must be used together
 with `--streamline-assignment`.
 --objective-relative-tolerance value
 Sets relative tolerance on cost function. Default:
 1e-06.
 --x-absolute-tolerance value
 Sets absolute tolerance on variable. Default: 1e-06.
 --maxiter count Sets maximum number of iterations. Default: 1000.

talon voxelize

The talon filter command allows to create the indices and weights
matrices that are necessary to define a talon linear operator as in
Getting started, but without the need to write any Python code.

The basic syntax that you’ll have to use is

talon voxelize streamlines.tck image.nii.gz indices.npz weights.npz

where streamline.tck is the tractogram to be voxelized, image.nii.gz is
a reference image that defines the shape of the linear operator (typically the
data that is going to be fitted in the filtering process) and indices.npz
and weights.npz are the two
COO sparse matrices [https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html]
that define the indices and weights of the linear operator respectively.

Streamlines

The input tractogram must be in NiBabel-readable format,
i.e., in tck or trk format. In both cases, it is required to be in
RAS+ and mm space. The streamline coordinate (0,0,0) refers to the center of
the voxel.

Output matrices

The two COO matrices are saved in .npz format. If the
suffix is not present in the filename, it is automatically appended.

Other options

>>> talon voxelize --help
usage: talon voxelize [-h] [--ndir number] [--force]
 [--quiet | --warn | --info | --debug]
 in_tracks in_img out_ind out_wei

Transform a tractogram into the `indices` and `weights` matrices that are used
in the definition of the linear operator used by TALON.

positional arguments:
 in_tracks Tractogram file to be voxelized in RAS+ and mm space. The
 streamline coordinate (0,0,0) refers to the center of the
 voxel. Must be in NiBabel-readable format (.trk or .tck).
 in_img Image serving as space reference. Must be in NiBabel-readable
 format (.nii or .nii.gz).
 out_ind Path where the indices will be saved in .npz format.
 out_wei Path where the weights will be saved in .npz format.

optional arguments:
 -h, --help show this help message and exit
 --ndir number Number of directions for the voxelization. Default: 1000.
 --force Overwrite existing files.
 --quiet Do not display messages.
 --warn Display warning messages.
 --info Display information messages.
 --debug Display debug messages.

Solving the inverse problem

The talon package, provides a way to solve the following optimization
problem

\[x^* = \arg\!\min_x \frac{1}{2}\|Ax - y\|_2^2 + \Omega(x)\]

where \(x\) is a vector in \(\mathbb{R}^n\), \(A\) is a linear
operator from \(\mathbb{R}^n \to \mathbb{R}^m\) and \(y\) is a vector in
\(\mathbb{R}^m\). The functional \(\Omega: \mathbb{R}^n \to \mathbb{R}\)
acts as regularization term and must be convex and lower semi-continuous.

The first term of the target functional is devoted to the fitting of the data
vector by means of the forward linear operator \(A\) and the
coefficient \(x_j\) associated to each atom of \(A\).

Defining regularization term

	The possible choices for the regularization term are the following.
	
	Least Squares

	Non Negativity Constraint

	Structured Sparsity

	Structured Sparsity with Non Negativity

Each of these regularization terms can be defined in talon by calling the
talon.regularization function.

Least Squares

Whenever \(\Omega(x) = 0\) for all the admissible values of \(x\), the
problem reduces to the classical Least Squares formulation. This is the default
regularization term in talon, hence one just needs to call the
talon.regularization function as follows.

regterm = talon.regularization()

See an example of this problem in Solve the Least Squares problem.

Non Negativity Constraint

To solve the Non Negative Least Squares (NNLS) problem the regularization term
must be the indicator function (in the sense of convex analysis) of the first
orthant, namely

\[\Omega(x) = \iota_{\ge 0}(x)\]

which is the function that takes value \(\infty\) whenever \(x\) does
not belong to the first orthant. The talon way to obtain such a regularization
term is the following.

regterm = talon.regularization(non_negativity=True)

See an example of this problem in Solve the Non Negative Least Squares (NNLS) problem.

Structured Sparsity

To promote sparse solutions, define the group sparsity regularization term

\[\Omega(x) = \lambda \sum_{g\in G} w_g \|x_g\|_2\]

where \(\lambda\) is the regularization parameter, \(w_g\) is the weight
associated to each group \(g\), \(x_g\) is the subset of entries of
\(x\) corresponding to group \(g\) and \(G\) is the list of groups.
See [2011j] for a discussion on the mathematical definition of these groups.

The groups \(g\in G\) must be defined as a list of lists, where each element
encodes the indices that define a single group. The weights \(w_g\)
associated to each group must be contained in a single numpy array of the same
length as \(G\). The following code defines three groups and some standard
weight for each of them.

groups = [[0, 2, 5], [1, 3, 4, 6], [7, 8, 9]]
weights = np.array([1.0 / len(g) for g in groups])

Ones the groups, the weights and the regularization parameter are defined,
the regularization term can be initialized as follows.

print('Regularization parameter: {}'.format(the_lambda))
print('Number of groups: {}'.format(len(groups)))
print('Number of weights: {}'.format(len(weights)))

regterm = talon.regularization(regularization_parameter=the_lambda,
 groups=groups, weights=weights)

See an example of this problem at Solve the Group Sparsity problem.

Notice that the standard \(\ell_1\) regularization is a particular case of
structure sparsity where there is only one group containing all the admissible
indices. Assuming that these indices are \(0\dots n\), the following line of
code defines the problem for classical \(\ell_1\) regularization.

groups = [list(range(n))]

See an example of this problem at Solve the Lasso problem and Solve the Non Negative Lasso problem.

Structured Sparsity with Non Negativity

To add the Non Negativity constraint to the Structured Sparsity regularization
we just need to set the non_negativity flag as True during the
initialization of the regularization term.

regterm = talon.regularization(regularization_parameter=the_lambda,
 groups=groups, weights=weights,
 non_negativity=True) # here it is

See an example of this problem at Solve the Non Negative Group Sparsity problem.

Computing the solution

The function devoted to the computation of the solution of the inverse
problem is the talon.solve function. It can be called as follows.

linear_operator = # build linear operator
data = # define the data to fit
reg_term = # initialize the regularization term as above

solution = talon.solve(linear_operator=linear_operator,
 data=data,
 reg_term=regterm)

The optimization problem is solved with the FISTA+BT algorithm proposed by Beck
and Teboulle in [2009b].

See the API documentation for the description of the supplementary optional
parameters.

The talon.solve function is a wrapper of the
pyunlocbox.solvers.solve function.

Reading the result

The result of the optimization problem is given as a
scipy.optimize.OptimizeResult object, which is a dictionary with the
following fields.

	x: estimated solution.

	
	status: attribute of talon.solve.ExitStatus enumeration. If
	\(\text{status} < 1\), the algorithm didn’t converge properly.

	message: string explaining reason for termination.

	fun: value of the objective function at the minimizer.

	nit: number of performed iterations

	reg_param: value of the regularization parameter, if employed.

Examples

Build the ground truth tractogram with two bundles of fibers.

import matplotlib.pyplot as plt
import numpy as np
import talon

from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import interp1d

Set seed for reproducibility
np.random.seed(1992)

The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

Generate the ground truth tractogram.
tractogram = []
n_streamlines_per_bundle = 50

horizontal_points = np.array([[0, center, center],
 [image_size - 1, center, center]])
horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
 new_streamline = horizontal_streamline.copy()
 new_streamline[:,1] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)

vertical_points = np.array([[center, 0, center],
 [center, image_size - 1, center]])
vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
 new_streamline = vertical_streamline.copy()
 new_streamline[:,0] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)

Show the ground truth tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
 ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r',
 linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
 horizontal_streamline[:,1],
 horizontal_streamline[:,2], 'k')
ax.plot(vertical_streamline[:,0],
 vertical_streamline[:,1],
 vertical_streamline[:,2], 'k')
ax.view_init(90,90)
ax.set_zticks([])
plt.title('Ground truth tractogram')
plt.show()

You should see the following image:

[image: _images/gt_tractogram.png]
Generate the corresponding linear operator and the streamline density.

directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)

data = linear_operator @ np.ones(linear_operator.shape[1], dtype=np.float64)
image = data.reshape(image_shape)

Plot the density of the ground truth streamlines

plt.figure(figsize=(5, 5), dpi=150)
plt.imshow(image[:, :, center])
plt.colorbar(shrink=0.8)
plt.title('Ground truth density of streamlines')
plt.show()

You should see the following image:

[image: _images/gt_density.png]
Add a diagonal bundle of false positives.

diagonal_points = np.array([[0, center, center],
 [center, image_size - 1, center]])
diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

for k in range(n_streamlines_per_bundle):
 new_streamline = diagonal_streamline.copy()
 new_streamline[:,0] += (np.random.rand(1) - 0.5)
 new_streamline[:,1] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)

Visualize the new tractogram.

fig = plt.figure(figsize=(5, 5), dpi=150)
ax = fig.add_subplot(111, projection='3d')

for streamline in tractogram:
 ax.plot(streamline[:,0], streamline[:,1], streamline[:,2], 'r', linewidth=0.1)

ax.plot(horizontal_streamline[:,0],
 horizontal_streamline[:,1],
 horizontal_streamline[:,2], 'k')
ax.plot(vertical_streamline[:,0],
 vertical_streamline[:,1],
 vertical_streamline[:,2], 'k')
ax.plot(diagonal_streamline[:,0],
 diagonal_streamline[:,1],
 diagonal_streamline[:,2], 'k')

ax.view_init(90,90)
ax.set_zticks([])
plt.title('Tractogram with supplementary bundle')
plt.show()

You should see the following image:

[image: _images/tractogram_with_fp.png]
Define the linear operator of the tractogram.

indices, lengths = talon.voxelize(tractogram, directions, image_shape)
linear_operator = talon.operator(generators, indices, lengths)

Solve the Least Squares problem

solution = talon.solve(linear_operator=linear_operator, data=data,
 verbose='NONE')

print('\nLeast Squares solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following.

Least Squares solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 145
Average coefficient of horizontal streamlines: 0.9999996764340565
Average coefficient of vertical streamlines: 0.9999996573175529
Average coefficient of diagonal streamlines : 4.908558143242968e-06
Value at minimizer: 7.0157355592255e-07

Solve the Non Negative Least Squares (NNLS) problem

reg_term = talon.regularization(non_negativity=True)
solution = talon.solve(linear_operator=linear_operator, data=data,
 reg_term=reg_term, verbose='NONE')

print('\nNNLS solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0:n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle])/
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2*n_streamlines_per_bundle:3*n_streamlines_per_bundle])/
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following.

NNLS solution
Success: True
Status: ExitStatus.ABSOLUTE_TOLERANCE_X
Exit criterion: XTOL
Number of iterations: 25
Average coefficient of horizontal streamlines: 0.9999991567472424
Average coefficient of vertical streamlines: 0.9999991568721199
Average coefficient of diagonal streamlines : 5.0072499918376545e-06
Value at minimizer: 3.620593044727195e-07

Solve the Lasso problem

regpar = 1.0 # regularization parameter a.k.a. the lambda in the formula
groups = []
groups.append([k for k in range(0, len(tractogram))])

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
 regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
 reg_term=reg_term, verbose='NONE')
print('\nLasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 93
Average coefficient of horizontal streamlines: 0.9999926298816814
Average coefficient of vertical streamlines: 0.9999925070704963
Average coefficient of diagonal streamlines : -2.1995490196016877e-05
Value at minimizer: 0.8165122997013363

Solve the Non Negative Lasso problem

reg_term = talon.regularization(non_negativity=True,
 groups=groups, weights=weights,
 regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
 reg_term=reg_term, verbose='NONE')
print('\nNon Negative Lasso solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Non Negative Lasso solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 23
Average coefficient of horizontal streamlines: 0.9999914147578718
Average coefficient of vertical streamlines: 0.9999914603196133
Average coefficient of diagonal streamlines : 4.482209580050452e-06
Value at minimizer: 0.8164938196507543

Solve the Group Sparsity problem

groups = []
groups.append([k for k in range(0, n_streamlines_per_bundle)]) # horizontal
groups.append([k for k in range(n_streamlines_per_bundle,
 2 * n_streamlines_per_bundle)]) # vertical
groups.append([k for k in range(2 * n_streamlines_per_bundle,
 3 * n_streamlines_per_bundle)]) # diagonal

weights = np.array([1.0 / np.sqrt(len(g)) for g in groups])

reg_term = talon.regularization(groups=groups, weights=weights,
 regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
 reg_term=reg_term, verbose='NONE')
print('\nGroup Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Group Sparsity solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 64
Average coefficient of horizontal streamlines: 0.9999821712768615
Average coefficient of vertical streamlines: 0.9999823618643954
Average coefficient of diagonal streamlines : 2.2318881330827924e-05
Value at minimizer: 2.000096258909371

Solve the Non Negative Group Sparsity problem

reg_term = talon.regularization(groups=groups, weights=weights,
 non_negativity=True,
 regularization_parameter=regpar)

solution = talon.solve(linear_operator=linear_operator, data=data,
 reg_term=reg_term, verbose='NONE')
print('\nNon Negative Group Sparsity solution')
print('Success: {}'.format(solution['success']))
print('Status: {}'.format(solution['status']))
print('Exit criterion: {}'.format(solution['message']))
print('Number of iterations: {}'.format(solution['nit']))

x = solution['x']
print('Average coefficient of horizontal streamlines: {}'.format(
 np.sum(x[0: n_streamlines_per_bundle])/n_streamlines_per_bundle))
print('Average coefficient of vertical streamlines: {}'.format(
 np.sum(x[n_streamlines_per_bundle:2*n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Average coefficient of diagonal streamlines : {}'.format(
 np.sum(x[2 * n_streamlines_per_bundle: 3 * n_streamlines_per_bundle]) /
 n_streamlines_per_bundle))
print('Value at minimizer: {}\n'.format(sum(solution['fun'])))

The output should be the following:

Non Negative Group Sparsity solution
Success: True
Status: ExitStatus.RELATIVE_TOLERANCE_COST
Exit criterion: RTOL
Number of iterations: 22
Average coefficient of horizontal streamlines: 0.9999825264666186
Average coefficient of vertical streamlines: 0.9999825878147537
Average coefficient of diagonal streamlines : 0.0
Value at minimizer: 1.9999822314331122

References

	2009b

	Beck, Amir, and Marc Teboulle. “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems.” SIAM journal
on imaging sciences 2.1 (2009): 183-202.

	2011j

	Jenatton, Rodolphe, et al. “Proximal methods for hierarchical
sparse coding.” Journal of Machine Learning Research 12.Jul (2011):
2297-2334.

Concatenating linear operators

It is possible to concatenate linear operators in a way that imitates the
numpy.concatenate function. The only concatenations that are allowed are
in the vertical and horizontal directions.

The talon.concatenate function requires an iterable containing the linear
operators to concatenate and the axis along which they have to be concatenated.

The following code shows the correct syntax to concatenate two linear operators
\(A\) and \(B\) vertically and horizontally:

V = talon.concatenate((A, B), axis=0) # vertical (default)
H = talon.concatenate((A, B), axis=1) # horizontal

which correspond to the following

\[\begin{split}V = \begin{bmatrix} A \\ B \end{bmatrix} \qquad
H = \begin{bmatrix} A & B \end{bmatrix}.\end{split}\]

Examples

Build a tractogram with two crossing bundles of fibers and the corresponding
linear operator.

import numpy as np
import talon

from scipy.interpolate import interp1d

Set seed for reproducibility
np.random.seed(1992)

The number of voxels in each dimension of the output image.
image_size = 25
center = image_size // 2

n_points = int(image_size / 0.01)
t = np.linspace(0, 1, n_points)

streamlines_per_bundle = 50

def generate_crossing_tractogram():
 tractogram = []

 horizontal_points = np.array([[0, center, center],
 [image_size - 1, center, center]])
 horizontal_streamline = interp1d([0, 1], horizontal_points, axis=0)(t)

 for k in range(streamlines_per_bundle):
 new_streamline = horizontal_streamline.copy()
 new_streamline[:,1] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)

 vertical_points = np.array([[center, 0, center],
 [center, image_size - 1, center]])
 vertical_streamline = interp1d([0, 1], vertical_points, axis=0)(t)

 for k in range(streamlines_per_bundle):
 new_streamline = vertical_streamline.copy()
 new_streamline[:,0] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)
 return tractogram

cross_tractogram = generate_crossing_tractogram()
directions = talon.utils.directions(1000)
generators = np.ones((len(directions), 1))
image_shape = (image_size,) * 3
indices, lengths = talon.voxelize(cross_tractogram, directions, image_shape)

A = talon.operator(generators, indices, lengths)

Vertical concatenation

If multiple features for each streamline are encoded in different linear
operators we can concatenate different linear operators vertically. If \(A\)
encodes the linear operator for the set of streamlines \(\alpha\) and
generators \(G_1\) and \(B\) encodes the linear operator for the same
streamlines but with generators \(G_2\), instead of rebuilding the linear
operator from scratch we can concatenate \(A\) and \(B\) vertically
to obtain the same result.

G2 = np.random.rand(len(directions), 5) # New generators
B = talon.operator(G2, indices, lengths)

V = talon.concatenate((A,B), axis=0)

print('Shape of A: {}'.format(A.shape))
print('Shape of B: {}'.format(B.shape))
print('Shape of V: {}'.format(V.shape))
print('Check: {} + {} = {}'.format(A.shape[0], B.shape[0], A.shape[0] + B.shape[0]))

Notice that the axis=0 argument is redundant since it is the default.

The output should be the following:

Shape of A: (15625, 100)
Shape of B: (78125, 100)
Shape of V: (93750, 100)
Check: 15625 + 78125 = 93750

Horizontal concatenation

One (but not the only) reason to concatenate two linear operators horizontally
is to add a set of streamlines to the system. If \(A\) encodes the linear
operator for the set of streamlines \(\alpha\) and \(C\) for set
\(\beta\), instead of rebuilding the linear operator from scratch we can
concatenate \(A\) and \(C\) horizontally to obtain the same result.

def generate_diagonal_tractogram():
 tractogram = []
 diagonal_points = np.array([[0, center, center],
 [center, image_size - 1, center]])
 diagonal_streamline = interp1d([0, 1], diagonal_points, axis=0)(t)

 for k in range(streamlines_per_bundle):
 new_streamline = diagonal_streamline.copy()
 new_streamline[:,0] += (np.random.rand(1) - 0.5)
 new_streamline[:,1] += (np.random.rand(1) - 0.5)
 tractogram.append(new_streamline)
 return tractogram

diag_tractogram = generate_diagonal_tractogram()
indices, lengths = talon.voxelize(diag_tractogram, directions, image_shape)

C = talon.operator(generators, indices, lengths) # diagonal

The concatenation of the two linear operators is performed as follows:

H = talon.concatenate([A, C], axis=1)
print('Shape of A: {}'.format(A.shape))
print('Shape of C: {}'.format(C.shape))
print('Shape of H: {}'.format(H.shape))

The output should be the following:

Shape of A: (15625, 100)
Shape of C: (15625, 50)
Shape of H: (15625, 150)

The matrix multiplication and transposition operations work as usual:

x = H @ np.random.rand(H.shape[1])
y = H.T @ np.random.rand(H.shape[0])

print('Shape of x: {}'.format(x.shape))
print('Shape of y: {}'.format(y.shape))

The output should be the following:

Shape of x: (15625,)
Shape of y: (150,)

Create linear operator from volume

It may be interesting to create linear operators that describe a single
contribution for each voxel as in a volume mask. This can be encoded as follows:

\[\begin{split}\begin{bmatrix}
 w_1 \cdot \mathbf{g} & & & \\
 & w_2 \cdot \mathbf{g} & & \\
 & & \ddots & \\
 & & & w_n \cdot \mathbf{g} \\
\end{bmatrix}\end{split}\]

where \(\mathbf{g}\) is the generator used for every voxel and
\(w_j\) is the value of the mask at voxel \(j\). Only the voxels
exhibiting non-zero value are considered.

To build such a linear operator, one just needs to provide a three-dimensional
ndarray to the talon.diagonalize function.

Example

Let us build a toy volume of dimension 2-by-2-by-2 with values from 0 to 7.

import numpy as np
values = np.arange(2 ** 3).astype(np.float64)

mask = values.reshape((2,) * 3)
print(mask)

Output:

[[[0. 1.]
 [2. 3.]]

 [[4. 5.]
 [6. 7.]]]

To diagonalize the volume, call the corresponding talon function.

import talon
indices, weights = talon.diagonalize(mask)

The considered generator is vector \(g = [1, 10]^T\).

generators = np.array([[1.0, 10.0]])
linear_operator = talon.operator(generators, indices, weights)

Check the output:

print(linear_operator.todense())

[[0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0. 0.]
 [10. 0. 0. 0. 0. 0. 0.]
 [0. 2. 0. 0. 0. 0. 0.]
 [0. 20. 0. 0. 0. 0. 0.]
 [0. 0. 3. 0. 0. 0. 0.]
 [0. 0. 30. 0. 0. 0. 0.]
 [0. 0. 0. 4. 0. 0. 0.]
 [0. 0. 0. 40. 0. 0. 0.]
 [0. 0. 0. 0. 5. 0. 0.]
 [0. 0. 0. 0. 50. 0. 0.]
 [0. 0. 0. 0. 0. 6. 0.]
 [0. 0. 0. 0. 0. 60. 0.]
 [0. 0. 0. 0. 0. 0. 7.]
 [0. 0. 0. 0. 0. 0. 70.]]

Functions

	
talon.utils.check_pattern_iw(indices_of_generators: scipy.sparse.coo.coo_matrix, weights: scipy.sparse.coo.coo_matrix) → None

	Check if the sparsity pattern of the indices and the weights are the same.

This function performs a complete check on the sparsity pattern of the
indices_of_generators and the weights matrices. If the two matrices
have a different number of non-empty entries or the non-empty entries are
in different locations, it raises an error.

If the two matrices came out of talon.voxelization, this check is not
necessary.

Note

This function is very expensive in terms of memory and time.

	Parameters

	
	indices_of_generators – sp.coo_matrix of the indices.

	weights – sp.coo_matrix of the weights.

	Raises

	ValueError – If weights and indices_of_generators don’t have the
 same sparsity pattern.

	
talon.utils.concatenate_giw(giws: Iterable, axis: int = 0) → tuple

	Concatenates generators, indices, and weights along an existing axis

The indices and weights are concatenated along the supplied axis and the
generators along axis 1. The generators must have the same number of
columns. The indices and weights must have the same shape, except in
the dimension corresponding to axis.

	Parameters

	
	giws – An iterable of (generator, indices, weights) to concatenate
e.g. [(g1, i1, w1), (g2, i2, w2)].

	axis – The axis along which the indices and weights will be joined.
Default is 0.

	Returns

	The concatenated generators, indices, and weights.

	
talon.utils.directions(number_of_points: int = 180) → numpy.ndarray

	Get a list of 3D vectors representing the directions of the fibonacci
covering of a hemisphere of radius 1 computed with the golden spiral method.
The \(z\) coordinate of the points is always strictly positive.

	Parameters

	number_of_points – number of points of the wanted covering (default=180)

	Returns

	
	number_of_points x 3 array with the cartesian coordinates
	of a point of the covering in each row.

	Return type

	ndarray

	Raises

	ValueError – if number_of_points <= 0 .

References

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere/44164075#44164075

	
talon.utils.mask_data(data: numpy.ndarray, linear_operator: talon.core.LinearOperator) → numpy.ndarray

	Mask the data using the mask that covers only the entries that are affected
by the linear operator. This prevents numerical errors in the solution of
the optimization problem.

	Parameters

	
	data – np.ndarray one dimensional array that contains the data to mask.

	linear_operator – LinearOperator object that contains the
self.data_mask attribute to be used as a mask.

	Returns

	np.ndarray with the same dimension as data where the entries
corresponding to the False entries of the mask have been set to zero.

Classes

Linear Operator

CPU

	
class talon.core.LinearOperator(*args, **kwargs)

	
	
__init__(generators, indices_of_generators, weights)

	Linear operator that maps tractography to signal space.
The linear operator can be used to compute products with a vector.

	Parameters

	
	generators – np.array where each row is a generator.

	indices_of_generators – COO sparse matrix that tells which
generator is called where in the linear operator.

	weights – COO sparse matrix that encodes the weight applied to each
generator indexed by indices_of_generators. It has the same
dimension as indices_of_generators.

	Raises

	
	TypeError – If generators is not a numpy ndarray of float.

	TypeError – If indices_of_generators is not a COO scipy matrix.

	TypeError – If weights is not a COO scipy matrix of float64.

	ValueError – If weights does not have the same dimension
 as indices_of_generators.

	
property columns

	Returns the indices of the nonzero columns.

	Type

	int

	
property data_mask

	Returns the mask to apply to the data to keep only the entries
covered by the linear operator.

	
property generator_length

	length of each generator (constant across generators).

	Type

	int

	
property generators

	Returns the generators of the linear operator.

	Type

	np.ndarray

	
property indices

	Returns the generator indices.

	Type

	np.ndarray

	
property nb_atoms

	Number of atoms (columns) in the linear operator.

	Type

	int

	
property nb_data

	Number of data points.

	Type

	int

	
property nb_generators

	Number of generators.

	Type

	int

	
property rows

	Returns the indices of the nonzero rows.

	Type

	int

	
property shape

	Shape of the linear operator.

The shape is given by the number of rows and columns of the linear
operator. The number of rows is equal to the number of data points
times the length of the generators. The number of columns is equal to
the number of atoms.

	Type

	tuple of int

	
todense()

	Return the dense matrix associated to the linear operator.

Note

The output of this method can be very memory heavy to store. Use at
your own risk.

	Returns

	full matrix representing the linear operator.

	Return type

	ndarray

	
property transpose

	the transpose of the linear operator.

	Type

	_TransposedLinearOperator

	
property weights

	The weights of the nonzero elements

	Type

	np.ndarray

	
class talon.fast.LinearOperator(*args, **kwargs)

	
	
__init__(generators, indices_of_generators, weights)

	A LinearOperator that computes products quickly.

The FastLinearOperator class implements a linear operator optimized to
compute matrix-vector products quickly. It is single threaded and
written in pure Python, which makes it a good default choice for linear
operators.

	Parameters

	
	generators – np.array where each row is a generator.

	indices_of_generators – COO sparse matrix that tells which
generator is called where in the linear operator.

	weights – COO sparse matrix that encodes the weight applied to each
generator indexed by indices_of_generators. It has the same
dimension as indices_of_generators.

	Raises

	
	TypeError – If generators is not a numpy ndarray of float64.

	TypeError – If indices_of_generators is not a COO scipy matrix.

	TypeError – If weights is not a COO scipy matrix of float64.

	ValueError – if weights does not have the same dimension
 as indices_of_generators.

	ValueError – if weights and indices_of_generators don’t have the
 same sparsity pattern.

	
property transpose

	Returns the transpose of the linear operator.

	
class talon.core.ConcatenatedLinearOperator(*args, **kwargs)

	
	
__init__(operators, axis)

	Concatenated LinearOperator object

The ConcatenatedLinearOperator class implements the vertical or
horizontal concatenation of LinearOperator objects.

	Parameters

	
	operators – list or tuple of LinearOperator objects to be
concatenated in the same axis.

	axis – int direction in which we want to concatenate the
LinearOperator or ConcatenatedLinearOperator objects that we
want to concatenate. Vertical concatenation is obtained for
axis = 0 and horizontal concatenation is obtained for
axis = 1 as in np.concatenate. (Default: 0)

	Raises

	
	TypeError – If any element of operator is not an instance of
 LinearOperator or ConcatenatedLinearOperator.

	TypeError – If operators is not a list or a tuple.

	ValueError – If axis is not 0 or 1.

	ValueError – If operators is an empty list or tuple.

	ValueError – If the operators do not have compatible dimensions.

	
property axis

	axis in which the concatenation was performed.

	Type

	int

	
property data_mask

	Returns the mask to apply to the data to keep only the entries
covered by the linear operator.

	
property operators

	list of concatenated operators.

	Type

	list

	
property shape

	Shape of the concatenated linear operator.

	Type

	tuple of int

	
todense()

	Return the dense matrix associated to the linear operator.

Note

The output of this method can be very memory heavy to store. Use at
your own risk.

	Returns

	full matrix representing the linear operator.

	Return type

	ndarray

	
property transpose

	transpose of the linear
operator.

	Type

	TransposedConcatenatedLinearOperator

GPU

Regularization Term

	
class talon.optimization.RegularizationTerm(regularization_parameter: float)

	
	
__init__(regularization_parameter: float)

	Abstract base class for all regularization terms

The optimization problem solved by talon is

\[\min_x 0.5 \|A x - y\|^2 + \Omega(x)\]

where \(\Omega\) is a regularization term. This class is the base
for all concrete implementations of this term.

	Parameters

	regularization_parameter – float
The scaling factor of the regularization term. Must be a float
greater or equal to zero.

	Raises

	
	TypeError – If the regularization parameter is not a float and
 cannot be converted to a float.

	ValueError – If the regularization parameter is negative.

	
property groups: list

	Get the group structure associated to the regularization term.

	Returns: list
	List of lists of streamline indices.

	
property non_negativity: bool

	Get the activation of the non-negativity constraint.

	Returns: bool
	True if the non-negativity constraint is employed, False otherwise.

	
property regularization_parameter: float

	Get the regularization parameter.

	Returns: float
	The value of the regularization parameter.

	
property weights: numpy.ndarray

	Get the weight associated to each group.

	Returns: np.ndarray
	1-dimensional numpy array with one weight per group.

	
class talon.optimization.NoRegularization

	
	
__init__()

	Instantiates the zero-valued regularization term.

\[\Omega(x) = 0\]

	
class talon.optimization.NonNegativity

	
	
__init__()

	Instantiates the non-negativity constraint regularization function.

\[\Omega(x) = \iota_{\ge 0}(x)\]

	
class talon.optimization.StructuredSparsity(regularization_parameter: float, groups: list, weights: numpy.ndarray)

	
	
__init__(regularization_parameter: float, groups: list, weights: numpy.ndarray)

	Instantiates the structured sparsity regularization term.

\[\Omega(x) = \lambda \cdot \sum_{g\in G}w_g\cdot \|x_g\|_2\]

	Parameters

	
	regularization_parameter – float
Value of the regularization parameter.

	groups – list
List of lists of streamline indices.

	weights – np.ndarray
1-dimensional numpy array with one weight per group.

	
class talon.optimization.NonNegativeStructuredSparsity(regularization_parameter, groups, weights)

	
	
__init__(regularization_parameter, groups, weights)

	Instantiates the non-negative structured sparsity regularization term.

\[\Omega(x) = \iota_{\ge 0}(x) + \lambda \cdot \sum_{g\in G}w_g\cdot \|x_g\|_2\]

	Parameters

	
	regularization_parameter – float
Value of the regularization parameter.

	groups – list
List of lists of streamline indices.

	weights – np.ndarray
1-dimensional numpy array with one weight per group.

	
class talon.optimization.ExitStatus(value)

	Exit criteria of the optimization routine.

CLI module

These functions are available at the talon.cli module, which must be
imported separately.

import talon
import talon.cli

Utils

Commands

Filter

Voxelize

How to cite talon

If you use talon in your research, please cite the package in the following
format.

Matteo Frigo, Mauro Zucchelli, Rachid Deriche, Samuel Deslauriers-Gauthier.
“TALON: Tractograms As Linear Operators in Neuroimaging.”
⟨hal-03116143⟩ [https://hal.archives-ouvertes.fr/hal-03116143]

@misc{cobcomtalon,
 author = {Frigo, Matteo and Zucchelli, Mauro and Deriche, Rachid and
 Deslauriers-Gauthier, Samuel},
 title = {TALON: Tractograms As Linear Operators in Neuroimaging},
 howpublished = {CoBCoM},
 url = {https://hal.archives-ouvertes.fr/hal-03116143},
 year = {2021}
 }

List of Contributors

Talon was conceived in the ATHENA Project Team at Inria Sophia Antipolis -
Méditerranée. The package was initially developed within the Computational
Brain Connectivity Mapping (CoBCoM) project by:

	Samuel Deslauriers-Gauthier, ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

	Matteo Frigo , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

	Mauro Zucchelli , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

The project is currently maintained by:

	Samuel Deslauriers-Gauthier, ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

	Matteo Frigo , ATHENA Project Team, Inria Sophia Antipolis - Méditerranée.

License

MIT License

Copyright (c) 2021 CoBCoM

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Funding

The development of talon was funded by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (ERC
Advanced Grant agreement No 694665: CoBCoM - Computational Brain Connectivity
Mapping [https://project.inria.fr/cobcom/]).

[image: _images/logo_erc_eu.jpg]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 talon	

 	
 	
 talon.utils	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | W

_

 	
 	__init__() (talon.core.ConcatenatedLinearOperator method)

 	(talon.core.LinearOperator method)

 	(talon.fast.LinearOperator method)

 	(talon.optimization.NonNegativeStructuredSparsity method)

 	(talon.optimization.NonNegativity method)

 	(talon.optimization.NoRegularization method)

 	(talon.optimization.RegularizationTerm method)

 	(talon.optimization.StructuredSparsity method)

A

 	
 	axis (talon.core.ConcatenatedLinearOperator property)

C

 	
 	check_pattern_iw() (in module talon.utils)

 	columns (talon.core.LinearOperator property)

 	
 	concatenate_giw() (in module talon.utils)

 	ConcatenatedLinearOperator (class in talon.core)

D

 	
 	data_mask (talon.core.ConcatenatedLinearOperator property)

 	(talon.core.LinearOperator property)

 	
 	directions() (in module talon.utils)

E

 	
 	ExitStatus (class in talon.optimization)

G

 	
 	generator_length (talon.core.LinearOperator property)

 	
 	generators (talon.core.LinearOperator property)

 	groups (talon.optimization.RegularizationTerm property)

I

 	
 	indices (talon.core.LinearOperator property)

L

 	
 	LinearOperator (class in talon.core)

 	(class in talon.fast)

M

 	
 	mask_data() (in module talon.utils)

 	
 	
 module

 	talon.utils

N

 	
 	nb_atoms (talon.core.LinearOperator property)

 	nb_data (talon.core.LinearOperator property)

 	nb_generators (talon.core.LinearOperator property)

 	
 	non_negativity (talon.optimization.RegularizationTerm property)

 	NonNegativeStructuredSparsity (class in talon.optimization)

 	NonNegativity (class in talon.optimization)

 	NoRegularization (class in talon.optimization)

O

 	
 	operators (talon.core.ConcatenatedLinearOperator property)

R

 	
 	regularization_parameter (talon.optimization.RegularizationTerm property)

 	
 	RegularizationTerm (class in talon.optimization)

 	rows (talon.core.LinearOperator property)

S

 	
 	shape (talon.core.ConcatenatedLinearOperator property)

 	(talon.core.LinearOperator property)

 	
 	StructuredSparsity (class in talon.optimization)

T

 	
 	
 talon.utils

 	module

 	todense() (talon.core.ConcatenatedLinearOperator method)

 	(talon.core.LinearOperator method)

 	
 	transpose (talon.core.ConcatenatedLinearOperator property)

 	(talon.core.LinearOperator property)

 	(talon.fast.LinearOperator property)

W

 	
 	weights (talon.core.LinearOperator property)

 	(talon.optimization.RegularizationTerm property)

 _static/file.png

_static/minus.png

_static/plus.png

_images/getting-started-density.png

_images/getting-started-filtered.png
10

15

20

25

25

20

15

10

_images/getting-started-rgb.png

nav.xhtml

 Table of Contents

 		
 Welcome to talon’s documentation!

 		
 Installation

 		
 Check installation

 		
 For developers

 		
 Tests

 		
 Documentation

 		
 Getting started

 		
 Building a linear operator

 		
 Generating data with a linear operator

 		
 Explaining data with a linear operator

 		
 CLI: Command Line Interface

 		
 talon filter

 		
 Streamlines

 		
 Data

 		
 Output weights

 		
 Group sparsity regularization

 		
 Using GPUs

 		
 Other options

 		
 talon voxelize

 		
 Streamlines

 		
 Output matrices

 		
 Other options

 		
 Solving the inverse problem

 		
 Defining regularization term

 		
 Least Squares

 		
 Non Negativity Constraint

 		
 Structured Sparsity

 		
 Structured Sparsity with Non Negativity

 		
 Computing the solution

 		
 Reading the result

 		
 Examples

 		
 Solve the Least Squares problem

 		
 Solve the Non Negative Least Squares (NNLS) problem

 		
 Solve the Lasso problem

 		
 Solve the Non Negative Lasso problem

 		
 Solve the Group Sparsity problem

 		
 Solve the Non Negative Group Sparsity problem

 		
 References

 		
 Concatenating linear operators

 		
 Examples

 		
 Vertical concatenation

 		
 Horizontal concatenation

 		
 Create linear operator from volume

 		
 Example

 		
 Functions

 		
 Classes

 		
 Linear Operator

 		
 CPU

 		
 GPU

 		
 Regularization Term

 		
 CLI module

 		
 Utils

 		
 Commands

 		
 Filter

 		
 Voxelize

 		
 How to cite talon

 		
 List of Contributors

 		
 License

 		
 Funding

_images/gt_density.png
0

10

15

20

Ground truth density of streamlines

15

20

80

60

40

20

_images/gt_tractogram.png
10

15

20

25

Ground truth tractogram

25

20

15

10

_images/getting-started-spurious.png
10

15

20

25

25

20

15

10

_images/getting-started-streamlines.png
10

15

20

25

25

20

15

10

_images/tractogram_with_fp.png
Tractogram with supplementary bundle

10
15

20

25

25 20 15 10 5 0

_images/logo_erc_eu.jpg
European Research Council

Established by the European Commission

